

Pocket Professional[™] OWNER'S MANUAL

JOSEPH R. HORN

The Pocket Professional ™

Calculus

Owner's Manual

SPARCOM[®]

Edition 1 Manual Reorder No. 10111–1M August 1992 Software Reorder No. 10111–1A

Notice

Sparcom Corporation shall not be liable for any errors, loss of profit, or any other commercial damage, including but not limited to special, consequential, incidental or other damages, resulting from or in any way connected with the furnishing, performance, or use of this manual or software. This manual, the accompanying software, and the examples contained herein are provided "as is" and are subject to change without notice. Sparcom disclaims any other warranties, expressed or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. (For more information about warranty, see Appendix A, "Warranty and Service.")

This manual and the accompanying software are © Sparcom Corporation 1992. All rights reserved. Reproduction, transmission in any form or by any means, adaptation, or translation of this manual is prohibited without prior written permission of Sparcom, except as allowed under the copyright laws.

The owner of this manual is granted a one-user, non-commercial license to use the enclosed software, and may not copy, distribute, or transfer the software under any circumstances without prior written permission of Sparcom.

Portions of this manual are © Hewlett-Packard Company 1990 and are used with permission.

Portions of this software are licensed from Armstrong Publishing, Corvallis, OR, U.S.A.

Pocket Professional and Sparcom are registered trademarks of Sparcom Corporation.

Sparcom Corporation 897 NW Grant Avenue Corvallis, OR 97330 U.S.A.

Printing History

Edition 1

August 1992

Contents

Getting Started		9
	How to Use This Manual and Pac	9
	Manual Conventions	
	Installing and Removing an Application Card	
	Using the Library Menu	
	Stack and Flags	
	Memory Requirements	
	The 'SPARCOM' Directory	

Part 1: Interactive Menus

1	Main Menu	17
---	-----------	----

Using the Main Menu	17
Moving Around the Screen	19
Changing the Font Size	19
Viewing Items Too Wide for the Display	
Using the Search Mode	20
Text Editing	
Alpha Lock	
How to Load Data from the Stack	

2 Function Library23

Using the Function Library	
Fitting to One Point and One Slope	
Fitting to Two Points and Two Slopes	
Fitting to Many Points	
Entering a Piecewise Function	
Building a Polynomial from the Roots	
Finding the Roots of a Polynomial	
Calculating a Taylor Expansion	
Result Screen Operations	

Using Integration Analysis	33
Parameter Screen Tips	35
Integration Analysis	
Result Screen Operations	38

Using the Integral Tables	
Choosing a Section	41
Solving an Integral	
Storing User-Defined Integrals	45

5 Limit Analysis 47

Using Limit Analysis	47
Parameter Screen Tips	
Functions	50
Sequences	51
Series (Partial Sums)	52
Recursion Relations	53

6 Constant Library 55

Using the Constant Library	55
Viewing a Constant	56

7 Reference Data.....57

Using Reference Data	
Greek Alphabet	
SI Prefixes	60
Trig/Hyp Definitions	61
Trig/Hyp Pictures	
Relations	
Vector Formulas	64

Part 2: Stack-Based Toolkits

8	Function Toolkit	67
	Using the Function Toolkit	67
	SIMPL: Symbolic Simplification	
	TYLRA: Taylor Expansion	
	PROOT: Polynomial Root-Finder	71
	ROOTP: Roots to Polynomial	72
	PWISE: Piecewise Functions	
	QPWR: Rational Power of Function	74
	DELTA: Delta Function	
	LOGA: Logarithm, Any Base	
	NROOT: Nth Roots of a Number	77
	PINTR: Polynomial Interpolation	
	PTSLP: Point-Slope Fit	
	SPLIN: Cubic Spline Fit	80
	Trigonometric Functions	81
	Hyperbolic Functions	

9 Integration Toolkit......83

Using the Integration Toolkit	
LEFT: Left Rectangles	
RIGHT: Right Rectangles	
MIDPT: Midpoint Rectangles	
TRAPZ: Trapezoidal Method	
SIMPS: Simpson's Rule	
INDEF: Store Indefinite Integral	
DEFIN: Store Definite Integral	91

10 Plotting Toolkit93

Using the Plotting Toolkit	
PLOT2: Sparcom PLOT2 Menu	94
PLOT3: Sparcom PLOT3 Menu	94
DIFEQ: Sparcom DIFEQ Menu	94
GRF2: Sparcom 2D Graphics Environment	94
GRF3: Sparcom 3D Graphics Environment	94
PKEY: Sparcom Plotting Keys	95
The Enhanced Plot Menu	97
HP 48SX Plotting vs. Sparcom 2D & 3D Plotting	

Using 2D Plotting	.101
PLOT2: Sparcom PLOT2 Menu	.102
GRF2: Sparcom 2D Graphics Environment	.104

12 3D Plotting...... 111

Using 3D Plotting1	12
3D Plotting Demonstrations1	13
More About 3D Plotting1	16
PLOT3: Sparcom PLOT3 Menu1	19
GRF3: Sparcom 3D Graphics Environment1	26
DRAW3: Draw Plot (3D)1	30
ERASE: Erase PICT1	31
EYE3: Eye Point (3D)1	32
FUNC3: Function Plot Type (3D)1	33
PCURV3: Parametric Curve Plot Type (3D)1	34
PDIM: PICT Dimension1	35
PSURF3: Parametric Surface Plot Type (3D)1	36
STEQ: Store in EQ1	37
STOX: Store x-Component in EQ1	38
STOY: Store y-Component in EQ1	39
STOZ: Store z-Component in EQ1	40
TDOM: t-Variable Domain1	41
TRES: t-Variable Resolution1	42
TVAR: t-Variable Name1	43
UDOM: u-Variable Domain1	44
URES: u-Variable Resolution1	45
UVAR: u-Variable Name1	46
VBOX: Draw Viewing Box1	47
VDOM: v-Variable Domain1	48
VRES: v-Variable Resolution1	49

VVAR: v-Variable Name	150
XDOM: x-Variable Domain	151
XRES: x-Variable Resolution	
XRNG3: x-Axis Display Range (3D)	153
XVAR: x-Variable Name	154
XYPRJ: Draw xy-Plane Projection	
YDOM: y-Variable Domain	156
YRES: y-Variable Resolution	
YRNG3: y-Axis Display Range (3D)	
YVAR: y-Variable Name	159
ZRNG3: z-Axis Display Range (3D)	160

13 Differential Equations Plotting161

Using Differential Equations Plotting	161
DIFEQ: Sparcom DIFEQ Menu	
EULER: Euler's Method	
EMID: Euler's Method (Midpoint)	
EMOD: Modified Euler's Method	
RK4: Runge-Kutta Method (4th-Order)	
SLPFD: Slope Field	

Using the Vector Toolkit
What is a Symbolic Vector? 173
VKEY: Sparcom Vector Keys174
SIMPL: Symbolic Simplification
VUNIT: Unit Vector
VCROS: Cross Product
VDOT: Dot Product
VABS: Vector Length (Norm) 180
GRD: Gradient
DIV: Divergence
CURL: Curl
LAPL: Laplacian
V1OP: Unary Vector Operation
V2OP: Binary Vector Operation
V+: Vector Addition
V-: Vector Subtraction
V*: Vector Multiplication
V/: Vector Division
VDER: Vector Derivative
VINT: Vector Integral
SV→: Vector to Stack

→SV2: Stack to 2-Element Vector	
→SV3: Stack to 3-Element Vector	
VEVAL: Vector Evaluate	
$V \rightarrow Q$: Vector to Quotient	
V→NUM: Vector Evaluate to Number	
VNEG: Vector Negate	

Appendices and index

A Warranty and Service 203

Pocket Professional [™] Support	203
Limited One-Year Warranty	204
If the Application Card Requires Service	204
Environmental Limits	205

B Piecewise Functions 207

What is a Piecewise Function?	
Entry Rules	
Examples	

Index	 21	15	5

Getting Started

Sparcom's Pocket Professional[™] software is the first of its kind, developed to provide speed, efficiency and portability to students and professionals in the technical fields. When you slide the Pocket Professional[™] Calculus Pac into your HP 48SX, your calculator is instantly transformed into an "electronic textbook," ready to efficiently solve your Calculus problems.

This section covers:

- How to Use This Manual and Pac
- Manual Conventions
- □ Installing and Removing an Application Card
- Using the Library Menu
- □ Stack and Flags
- Memory Requirements
- □ The 'SPARCOM' Directory

How to Use This Manual and Pac

This manual is designed to be used with your Sparcom Pocket Professional[™] Calculus Pac in the following sequence:

- Read this section, "Getting Started," to learn how to install and operate the Calculus Pac and to get an overview of the structure of the Calculus Pac.
- Read the chapters in "Part 1: Interactive Menus," to learn how to use the interactive menus of the Calculus Pac, which provide easy-to-use, intuitive access to many of the functions in the Calculus Pac. The interactive menus introduce you to a "recognition" approach to problem-solving, of which the central feature is the *browser menu*—a vertical list of choices in full English words or standard abbreviations. A choice is selected by moving the arrow pointer up and down the menu with the cursor keys and pressing ENER. (For more information, see Chapters 1 through 7.)
- 8 Read the chapters in "Part 2: Stack-Based Toolkits," to learn how to use the various Toolkits of the Calculus Pac, which provide advanced functions and

custom environments. The stack-based Toolkits introduce you to a "recall" approach to problem-solving, of which the central feature is the *Toolkit menu*—a horizontal list of commands on HP 48SX softkeys (menukeys). Each command requires a specific number of arguments to be placed on the stack before pressing the softkey. (For more information, see Chapters 8 through 14.)

• Use the table of contents and index to locate further topics of interest.

Manual Conventions

There are a few simple conventions used throughout this and other Pocket Professional [™] manuals:

- Keys on the HP 48SX keyboard are shown in a boxed typeface, such as ENTER or ATTN.
- Menukeys (softkeys), which are located at the bottom of the HP 48SX screen and correspond directly to the top row of keys on the HP 48SX keyboard, are shown in an inverse typeface, such as CALCU or QUIT.
- Programmable commands are always shown in uppercase letters, such as SIN or SIMPL.

Installing and Removing an Application Card

The HP 48SX has two ports for installing plug-in application cards. You can install your Calculus Pac in either port.

<u>WARNING</u>: Turn off the HP 48SX while installing or removing an application card! Otherwise, user memory may be erased.

Installing an Application Card

To install an application card, follow these steps:

- Turn the HP 48SX off. Do not press IN until you have completed the installation procedure.
- Remove the port cover. Press against the grip lines and push forward. Lift the cover to expose the two plug-in ports, as shown below:

Select either empty port for the Pocket Professional[™] card, and position the card just outside the slot. Point the triangular arrow on the card toward the HP 48SX port opening, as shown below:

- Slide the card firmly into the slot. After you first feel resistance, push the card about 1/4 inch further, until it is fully seated.
- **6** Replace the port cover.

Removing an Application Card

To remove an application card, follow these steps:

- Turn the HP 48SX off. Do not press IN until you have completed the removal procedure.
- 2 Remove the port cover. Press against the grip lines and push forward. Lift the cover to expose the two plug-in ports, as shown above.
- Press against the card's grip and slide the card out of the port, as shown below:

Replace the port cover.

Using the Library Menu

After you turn on your HP 48SX, press 🔄 🖽 to display available libraries. Find and press 🖾 🖾 to display the Calculus Pac Library menu. The screen displays new menukeys (softkeys) along the bottom, as shown:

{	HOME	}			
4:	:	1			
ğ:					
Ę.					
Ē	LCU F		PLOT	VECT	SOUT

The first six Library menu softkeys provide access to the interactive menus, the four Toolkit menus, and product information about the Calculus Pac. (The other 92 softkeys in the Library menu are all of the programmable commands in the Calculus Pac. They are organized into the four Toolkit menus so that you only need to use the first six softkeys in the Library menu.)

Library Menu Operations

Кеу	Description	See
CALCU	Provides access to the interactive menus.	Chapters 1–7
FUNC	Displays the Function Toolkit menu.	Chapter 8
INTG	Displays the Integration Toolkit menu.	Chapter 9
PLOT	Displays the Plotting Toolkit menu.	Chapters 10-13
VECT	Displays the Vector Toolkit menu.	Chapter 14
ABOUT	Shows product information about the Calculus Pac.	-

Stack and Flags

The flag settings of your HP 48SX will never be modified by the Calculus Pac unless you specifically change them from inside an interactive prompt, and the stack will only be changed as a direct result of a command or if you push **ESTK** from the interactive menus to leave results on the stack. However, pressing **ETN** multiple times in rapid succession may abort a command or the interactive menus prematurely, in which case your stack and flag settings may be modified.

The display font size for the interactive menus is controlled by the setting of user flag 57. If flag 57 is clear, the smaller display font will be used; if flag 57 is set, the larger display font will be used. Hidden line removal for 3D function graphs is controlled by the setting of user flag 58. If flag 58 is clear, hidden line removal will be active for 3D function graphs; if flag 58 is set, hidden line removal will not be active for 3D function graphs. The state of units for the interactive menus (on or off) is controlled by the setting of user flag 61. If flag 61 is clear, units are on; if flag 61 is set, units are off. These three user flags will be modified by the Calculus Pac if you press **EONT**, **HEINE**, or **UNITE** during operation.

Memory Requirements

A minimum of about 1.7K free memory is required to access the interactive menus of the Calculus Pac. To use the various Toolkit commands may require more memory for complicated operations, such as a high order Taylor expansion. If the Calculus Pac appears to be functioning incorrectly, it is possible that there is not enough free memory in your HP 48SX to complete the operation. (For more information, see Chapter 5 of the HP 48SX Owner's Manual, "Calculator Memory.")

The 'SPARCOM' Directory

Sparcom Pocket Professional[™] Pacs create the directory 'SPARCOM' in the HOME directory of your HP 48SX. Inside the 'SPARCOM' directory, each Pac creates a subdirectory—for the Calculus Pac, that subdirectory is 'CALCUD'. When using the interactive menus, all variables for the Calculus Pac are stored inside 'CALCUD', so as not to conflict with your variables in other directories. If you are extremely low on free memory, you can purge the 'CALCUD' directory, using the command PGDIR. The next time you access the interactive menus, the 'CALCUD' directory will automatically be re-created. (For more information, see Chapter 7 of the HP 48SX Owner's Manual, "Directories.")

14 Getting Started

Interactive Menus

Chapter 1

Main Menu

The Main menu lists the interactive modules of the Calculus Pac. From the Main menu you can solve functions, numerically integrate expressions, perform limit analyses, access the Sparcom Graphics Environments, work with symbolic vectors, look up constants, solve integrals, or view reference data.

This chapter covers:

- Using the Main Menu
- Moving Around the Screen
- □ Changing the Font Size
- □ Viewing Items Too Wide for the Display
- Using the Search Mode
- Text Editing
- Alpha Lock
- How to Load Data from the Stack

Using the Main Menu

To get to the Main menu, follow these steps:

- Press 🔄 🖽 result to display all libraries available to your HP 48SX.
- 2 Find and press **CALCU** to display the Calculus Pac Library menu.
- O Press the first softkey, CALCU, to start the Calculus Pac interactive menus:

The Main menu lists the interactive modules of the Calculus Pac. A module is selected by moving the pointer to it and pressing ENTER.

Items in the Main Menu

Each item in the Main menu is briefly described below and is discussed in detail in the various chapters of this manual.

ltem	Description	See
Function Library	Interactive prompts for 7 functions.	Chapter 2
Integration Analysis	Interactive methods to perform nu- merical approximation of integrals.	Chapter 3
Integral Tables	Nearly 100 integrals in six sections.	Chapter 4
Limit Analysis	Interactive analysis of functions, se- quences, series, and recursions.	Chapter 5
Plotting: 2D w/ Trace	Information about and direct access to the Sparcom PLOT2 menu.*	Chapter 11
Plotting: 3D w/ Trace	Information about and direct access to the Sparcom PLOT3 menu.*	Chapter 12
Plotting: Diff. Eqns.	Information about and direct access to the Sparcom DIFEQ menu.*	Chapter 13
Vector Environment	Information about and direct access to the Vector Toolkit menu. [†]	Chapter 14
Constant Library	Includes 43 universal constants.	Chapter 6
Reference Data	Includes Greek alphabet, SI prefixes, trigonometric/hyperbolic definitions and relations, and vector formulas.	Chapter 7

Main Menu Items

Main Menu Operations

Screen		Softkeys		
Main Menu	ABOUT ≓STK	PRINT VIEW	FONT	QUIT

^{*} Accessing the Sparcom PLOT2, PLOT3, or DIFEQ menus in this manner automatically installs the Sparcom Plotting Keys and turns on User mode. (For more information, see "PKEY: Sparcom Plotting Keys" in Chapter 10.)

[†] Accessing the Vector Toolkit menu in this manner automatically installs the Sparcom Vector Keys and turns on User mode. (For more information, see "VKEY: Sparcom Vector Keys" in Chapter 14.)

Key	Action
ABOUT	Displays a screen containing the revision number and prod- uct information about the Calculus Pac.
FONT	Toggles between the small and large fonts.
PRINT	Prompts for ONE or CALL to select items, and then sends those items to an IR printer.
QUIT	Quits the Calculus Pac to the HP 48SX stack.
≓STK	Prompts for ONE or ALL to select items, and then copies those items to the stack.
VIEW	Displays entire text of an item too wide to fit on the screen.
ATTN	Quits the Calculus Pac to the HP 48SX stack.
ENTER	Moves down one level in the menu structure, entering the module selected by the pointer.
ON-MTH	Dumps the current screen to an IR printer.

Moving Around the Screen

Use the A and Keys to move the pointer up and down in a menu screen. Press I to move the pointer to the bottom of the screen, or to page down one screen at a time if the pointer is already at the bottom of the screen. Press I A to move the pointer to the top of the screen, or to page up one screen at a time. Press I to move the pointer to the very end of the menu or press I A to move the pointer to the very beginning of the menu.

Changing the Font Size

The default font for the Calculus Pac displays information in condensed, uppercase letters only. Pressing **FONT** will toggle the information to a larger font, which is case-sensitive:

-	Calculus
→Euno	tion Library
Inte	grațion Analysis
linte	grai ladies f Analusis
Piot	ting 2D w/ Trace
Plot	ting: 3D w/ Trace
HEOUT	STK PRINT VIEW FONT QUIT

The font size will remain the same until **FONT** is pressed again.

Viewing Items Too Wide for the Display

If the text of a menu item is too wide to fit within the display, an ellipsis (...) appears at the end of the line. On some screens, the **MIEW** softkey will be present—press **WIEW** to display the entire text of an item, up to one entire screen size. Once the full text has been displayed, press **ENER** or **MIEW** to the menu. At *all* screens, including those screens where **WIEW** is not present, pressing **F** will perform the same function. If an item does fit entirely on the screen, **WIEW** or **F** will beep and do nothing.

Using the Search Mode

When menu lists are long, it is faster to locate an item using the search mode. To initiate a search, press \bigcirc to display the following screen:

{ HOME SPARCOM CALCUD }	PRG
Search for:	
•	
€SKIP SKIP→ €DEL DEL→ INS ■	

The HP 48SX is now locked in alpha-entry mode, as indicated by the alpha annunciator at the top of the screen (not shown). Alpha entry mode activates the white capital letters printed to the lower right of many keys. (For more information, see "Alpha Lock" below and Chapter 2 of the HP 48SX Owner's Manual, "The Keyboard and Display.")

To perform a search, enter the first letter or letters of the desired string and press **ENTER**. The search function is case-sensitive, and will scan through all information in the current menu. To enter a lowercase letter in the alpha entry mode, precede the letter with **Eq.** To abort the search, press **ATTN**.

Text Editing

The softkeys present at the search screen and at many data input screens are command line editing keys. They allow you to edit the search string or input data. Their functions are summarized below. (For more information, see Chapter 3 of the HP 48SX Owner's Manual, "The Stack and Command Line.")

Screen	Softkeys					
Text Editing	←SK I P	SKIP→	←DEL	DEL→	INS	↑STK

Text Editing Open	rations
-------------------	---------

Key	Action
←DEL	Deletes all characters in the current word prior to the cursor.
DEL→	Deletes all characters between the cursor's current position and the first character of the next word.
INS	Toggles between insert and type-over modes.
←SKIP	Moves the cursor to the beginning of the current word.
SKIP→	Moves the cursor to the beginning of the next word.
í stk	Activates a limited version of the Interactive Stack, allowing arguments to be copied from the stack to the command line for editing by pressing ECE10 .
ATTN	Clears the command line if there is text present, or aborts text entry if the command line is already blank.
ENTER	Accepts the current command line as the entry and returns to the previous menu or list.

Alpha Lock

Flag -60 controls whether or not Alpha Lock mode is set. The default setting for flag -60 is clear, which means that pressing \bigcirc places the HP 48SX in alpha-entry mode for only one character, and you must press $\bigcirc \bigcirc$ to lock alpha-entry mode. If flag -60 is set, then pressing \bigcirc only once locks alpha-entry mode. The examples in this manual assume that flag -60 is clear. (For more information, see Chapter 2 of the HP 48SX Owner's Manual, "The Keyboard and Display.")

How to Load Data from the Stack

At all data input prompts, it is possible to copy values from the HP 48SX stack to the command line, even though the Calculus Pac is executing. This is achieved through a limited version of the Interactive Stack. To activate the Interactive Stack at a data input prompt, press \checkmark , or if that does not work, press \bigcirc \bigcirc to display the EDIT menu and then press \bigcirc At this point, unless the stack is empty, the screen will display the contents of the stack. Move the pointer up and down the stack by pressing \bigcirc and \bigcirc , and when you reach the desired value, press \bigcirc to copy it to the command line for editing. To exit the Interactive Stack and return to the command line, press \bigcirc \bigcirc \bigcirc After returning to the command line, you can edit the value with the editing softkeys described above. (For more information, see Chapter 3 of the HP 48SX Owner's Manual, "The Stack and Command Line.")

Chapter 2

Function Library

The Function Library provides interactive prompts for seven functions, including point-slope, polynomial, and cubic spline fitting, piecewise function entry, polynomial building and root-finding, and arbitrary point Taylor expansions.

This chapter covers:

- Using the Function Library
- Fitting to One Point and One Slope
- Fitting to Two Points and Two Slopes
- Fitting to Many Points
- Entering a Piecewise Function
- Building a Polynomial from the Roots
- Finding the Roots of a Polynomial
- Calculating a Taylor Expansion
- Result Screen Operations

Using the Function Library

To get to the Function Library, follow these steps:

- Press 🔄 LIBARY to display all libraries available to your HP 48SX.
- 2 Find and press **CALCU** to display the Calculus Pac Library menu.
- **3** Press the first softkey, **CALCU**, to start the Calculus Pac interactive menus.
- At Main menu, make sure pointer is at "Function Library" and press ENIER:

The Function Library menu lists the seven interactive functions of the Calculus Pac. A function is selected by moving the pointer to it and pressing ENIER.

Items in the Function Library Menu

Each item in the Function Library menu is briefly described below and is discussed in detail in the various sections of this chapter.

Item	Description
Fitting (1 Pt/Slope)	Produces a linear function whose graph passes through a given point with a given slope.
Fitting (2 Pt/Slopes)	Produces the cubic function (spline) whose graph passes through two given points with given slopes.
Fitting (Many Points)	Finds the interpolating polynomial of many points.
Piecewise Functions	A series of prompts to define a piecewise function.
Polynomial Builder	Finds the polynomial with a given series of roots.
Polynomial Solver	Returns the real or complex roots of a polynomial.
Taylor Expansion	Finds the Taylor expansion about any point.

Function Library Menu Items

Function Library Menu Operations

Screen			Softk	eys		
Function Lib.	MAIN	→STK	PRINT	VIEW	FONT	UP

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for ONE or ALL to select items to print.
=STIX	Prompts for ONE or ALL to select items, and then copies those items to the stack.
UP	Returns to the Main menu.
VIEW	Displays entire text of an item too wide to fit on the screen.
ATTN	Quits the Calculus Pac to the HP 48SX stack.
ENTER	Moves down one level in the menu structure, executing the function selected by the pointer.

Fitting to One Point and One Slope

Make sure the pointer is at "Fitting (1 Pt/Slope)" and press ENTER:

The input required is a point and slope.

The result obtained will be an equation describing the line passing through the point with the specified slope.

Example: Calculate the equation of the line passing through the point (3,5) with a slope of 2. Type in 3 + 5 + 5 + 2 as your input (use the softkeys to aid entry if desired):

{ HOME SPARC	OM CALCUD	PRG }
Enter po: → (X,Y) s (cmplx r	int and slope real)	slope:
(3,5) 24)	

Press ENTER to calculate the equation, and it will appear:

Point-Slope Fit →'2XX-1'
MAIN [#STK PRINT VIEW FONT UP

Fitting to Two Points and Two Slopes

Make sure the pointer is at "Fitting (2 Pt/Slopes)" and press ENTER:

The input required is a point and slope and another point and slope.

The result obtained will be an equation describing the cubic polynomial passing through the two point with the specified slopes. (This is called a *cubic spline*.)

Example: Calculate the equation of the cubic polynomial passing through the point (2,2) with a slope of 7 and through the point (3,14) with a slope of 18. Type in (1) 2, 2, 2, 7, 7, 14, 14, 18 as your input (use the softkeys to aid entry if desired):

ł	HOME	SPAR	COM CALC	:UD }		PRG
E + (nter (X1 CMF	i×	point > slo rea	s⁄s pe1 l))
(2,22	7	(3,14) 1	34	

Press ENTER to calculate the equation, and it will appear:

Fitting to Many Points

Make sure the pointer is at "Fitting (Many Points)" and press ENTER:

The input required is a series of points.

The result obtained will be an equation describing the polynomial passing through the specified points. (This is called the *interpolating polynomial*.)

{ HOM	E SPAF		ALCUD	}	PRG
Ente → (> (al	21, P3	pints 1) mplx	51 (Xh)	I, YN:	>
(0,1) (2	2,3)	(3,	7)4	

Press ENIER to calculate the equation, and it will appear:

Polynomial →'%^2-X+1'	Fit
MAIN OSTK PRINT VIEW	FONT

Entering a Piecewise Function

Make sure the pointer is at "Piecewise Functions" and press ENTER:

{ HOM	E SPAF		CALCUD	• }	PRG
Fnte	r te	>rm	or F	NTE	R:
> ex	pres	ssio	n re	gio	n
(eq	n		e	۲ñ ک	
<u> </u>					
_	*	<	>	<u> </u>	- A-

The input required is one or more terms, each consisting of an expression and a region.

The result obtained will be an equation describing the piecewise function.

(For more information and examples, see Appendix B, "Piecewise Functions.")

Example: Define the piecewise function $f(x) = \begin{cases} \sin(x)/x & x \neq 0 \\ undefined & x = 0 \end{cases}$. Type in $(Sin) \oslash X \models (Gamma) \lor (G$

Enter term or ENTER:	{ HOME SPAR	COM CALCU	AL(ID }	3 PRG
'SIN(X)/X' 'X≠0'	Enter te → expres	rm or sion r	ENTER	?: ר
	SIN(X)	<u>′X' 'X</u> ≠	:0'	

Press ENTER to accept this function term, and then press ENTER in response to the second prompt, to terminate entry and calculate the piecewise function:

The result can be viewed in the EquationWriter, copied to the stack, or printed on an IR printer. When you have finished viewing the result, press **UP** to return to the Function Library menu, **MATN** to return to the Main menu, or **MATN** to quit the Calculus Pac. For a complete summary of operations, see "Result Screen Operations."

28 2: Function Library

Building a Polynomial from the Roots

Make sure the pointer is at "Polynomial Builder" and press ENTER:

The input required is a series of real or complex roots of a polynomial.

The result obtained will be the polynomial with the specified roots.

Example: Calculate the polynomial whose roots are 0, 5, and 10. Type in 0 **Sec** 5 **Sec** 10 as your input:

Press ENTER to calculate the polynomial, and it will appear:

Finding the Roots of a Polynomial

Make sure the pointer is at "Polynomial Solver" and press ENTER:

{ HOME SPARCOM CALCUD }	PRG
Solve CN*X^N+…+C0=0 → CN … C4 C3 C2 C1 (all real/cmplx)	C0
•	
€SKIP SKIP÷ €DEL DEL÷ INS ■	†STK.

The input required is a series of real or complex coefficients of a polynomial.

The result obtained will be a series of real and complex roots of the polynomial.

Example: Calculate the roots of $0.321x^2 + 0.981x + 0.571$. Type in .321 [sc] .981 [sc] .571 as your input:

Press ENTER to calculate the roots, and they will appear:

The first item is the polynomial that was solved, and the remaining items are the roots of that polynomial. The polynomial can be viewed in the EquationWriter by selecting it with the pointer and pressing **ENER**, and all of the items can be copied to the stack or printed on an IR printer. When you have finished viewing the results, press **UP** to return to the Function Library menu, **MAIN** to return to the Main menu, or **AIN** to quit the Calculus Pac. For a complete summary of operations, see "Result Screen Operations."

Calculating a Taylor Expansion

Make sure the pointer is at "Taylor Expansion" and press ENTER:

The input required is a function, an independent variable, an integer order to which to expand, and a real point about which to expand.

The result obtained will be an equation which is the desired Taylor expansion.

Example: Find the Taylor series of the function sin(ln(x)) about the point x = e to the 3rd order. To do this, type in SNPLN X PPSC X X SC 3 SC 4 E as your input (if necessary, press 4 AD to enter Radians mode):

ALG PR { Home sparcom calcud }	G
Expand F(V) about A:	
(eqn var int>0 real	>
'SIN(LN(X))' X 3 e4	
(€SKIP SKIP)] €DEL DEL+ INS •[+S1	К

Press ENTER to calculate the specified Taylor expansion, which will appear:

The result can be viewed in the EquationWriter, copied to the stack, or printed on an IR printer. When you have finished viewing the result, press **UP** to return to the Function Library menu, **MATN** to return to the Main menu, or **MIN** to quit the Calculus Pac. For a complete summary of operations, see "Result Screen Operations."

For information about simplifying the result, see "SIMPL: Symbolic Simplification" in Chapter 8.

Result Screen Operations

These are the operations available at all result screens.

Result Screen Operations

Screen			Softk	eys		
Result Screen	MAIN	→STK	PRINT	VIEW	FONT	UP

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for ONE or ALL to select items, and then sends those items to an IR printer.
- STK	Prompts for CONE or CALL to select items, and then copies those items to the stack. The items are placed in a list if CALL was chosen.
UP	Returns to the Function Library menu.
VIEW	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size.
ATTN	Quits the Calculus Pac to the HP 48SX stack.
ENTER	Either views the result in the EquationWriter (equation) or displays the result expanded to a full screen (not equation).

Chapter 3

Integration Analysis

Integration Analysis includes interactive methods to numerically approximate integrals, including left, right, midpoint, trapezoids, and Simpson's Rule.

This chapter covers:

- Using Integration Analysis
- Parameter Screen Tips
- Integration Analysis
- Result Screen Operations

Using Integration Analysis

To get to Integration Analysis, follow these steps:

- Press 🔄 LERARY to display all libraries available to your HP 48SX.
- **2** Find and press **CALCU** to display the Calculus Pac Library menu.
- **O** Press the first softkey, **CALCU**, to start the Calculus Pac interactive menus.
- At the menu, make sure pointer is at "Integration Analysis" and press ENIER:

The Integration Analysis parameter screen lists the various parameters necessary to perform an integration analysis, including the ability to select one of the five integration techniques supported by the Calculus Pac.

Integration Analysis Techniques

Each technique available from the Integration Analysis parameter screen is briefly described below and is discussed in detail in the various sections of this chapter.

Item	Description
Left Rectangles (LEFT)	Calculates the Riemann lower sum of the definite integral of a function.
Right Rectangles (RIGHT)	Calculates the Riemann upper sum of the definite integral of a function.
Midpoint Rectangles (MIDPT)	Calculates the Riemann midpoint sum of the defi- nite integral of a function.
Trapezoidal Method (TRAPZ)	Approximates the definite integral of a function, using the trapezoidal method.
Simpson's Rule (SIMPS)	Approximates the definite integral of a function, using Simpson's Rule.

Integration Analysis Techniques

Integration Analysis Parameter Screen Operations

Screen			Softk	eys		
Integration	MAIN	→STK	PRINT	CALC	FONT	UP

Key	Action
CALC	Performs the actual analysis with the specified parameters.
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for ONE or ALL to select items to print.
-STK	Prompts for CONET or CALL to select items, and then copies those items to the stack.
UP	Returns to the Main menu.
ATTN	Quits the Calculus Pac to the HP 48SX stack.
ENTER	Prompts for value of the parameter selected by the pointer.

Parameter Screen Tips

The Integration Analysis parameter screen controls the integration interval starting and ending points, the integrand (a function of X), the number of partitions for the approximation, and the integration technique to be used.

Entry Tips

Here are some useful things to know about entering or editing parameters:

- To enter or edit the value of a parameter, move the pointer to it and press ENER. After entering or editing the value of a parameter, press ENER to accept the new value and return to the element parameter screen.
- Once you have begun entering or editing a parameter value, to abort the change, press ATM to clear the command line (if necessary) and then press ENER or ATM to return to the analysis parameter screen without changing the parameter value.
- ❑ You only need to enter values for those parameters that initially display, "Press ENTER." Other parameters (e.g., the number of partitions) will be given default values (e.g., 10) which you may modify if you wish.
- Make sure to place tic marks (') around symbolic arguments for the integrand.
- □ Some HP 48SX modes can be changed at the prompts where parameter values are entered (e.g., pressing 🔄 🔤 will toggle Radians mode).
- After entering all parameters, press **CALC** to begin the actual analysis.
Integration Analysis

After selecting "Integration Analysis" from the Main menu, this screen appears:

→START: END: P F(X): I PARTIT TECHN	Integ PRESS EN RESS ENT RESS ENT RESS ENT QUE: LEFT	eratio ITER ER ER	n
MAIN	STK PRINT	CALC FC	INT UP

You should now enter or edit the parameter values. When you have finished, press **CALC** to run the analysis, or at any time press **UP** or **MATIN** to return to the Main menu or **MTN** to quit the Calculus Pac.

Here are specific descriptions of these parameters:

- **Start:** Starting point of the interval. Must be a real number, or a symbolic expression such as $\pi/2'$ (which resolves to a real number).
- **End:** Ending point of the interval. Must be a real number, or a symbolic expression such as $'\pi/2'$ (which resolves to a real number).
- □ F(X): Must be an equation which is either constant or a function of one variable, X.
- **Partitions:** Number of partitions for the approximation. Must be a positive integer.
- □ Technique: LEFT, RIGHT, MIDPT, TRAPZ, or SIMPS. Change the technique by pressing ENER, moving the pointer to the desired technique, and pressing ENER.

Example: Approximate $\int_{0}^{1} \sin(x) dx$ according to the trapezoidal method, using

20 partitions. To do this, enter 0 as the interval start, ' $\pi/2$ ' as the interval end, 'SIN(X)' as F(X), 20 as the number of partitions, and TRAPZ as the integration technique. (If necessary, press $\mathbf{F}_{\mathbf{R}}$ while entering F(X) to enter Radians mode.) When finished, the screen should appear as follows:

Once the parameters have been specified, press **CALC** to run the analysis, and the result will appear:

Integral →.99948590526	Value
MAIN ƏSTK PRINT VI	EW FONT UP

The result can be copied to the stack or printed on an IR printer. When you have finished viewing the result, press **UP** to return to the Integration Analysis parameter screen, **MATN** to return to the Main menu, or **MTN** to quit the Calculus Pac. For a complete summary of operations, see "Result Screen Operations."

Result Screen Operations

These are the operations available at all result screens.

Result Screen Operations

Screen	Softkeys					
Result Screen	MAIN	→STK	PRINT	VIEW	FONT	UP

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for CONEN or CALLE to select items, and then sends those items to an IR printer.
- STK	Prompts for ONE or ALL to select items, and then copies those items to the stack. The items are placed in a list if ALL was chosen.
UP	Returns to the Integration Analysis parameter screen.
VIEW	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size.
ATTN	Quits the Calculus Pac to the HP 48SX stack.
ENTER	Displays the result expanded to a full screen.

Chapter 4

Integral Tables

The Integral Tables include nearly 100 integrals organized in six sections for quick reference: user-defined, rational, irrational, trigonometric/hyperbolic, exponential/logarithmic, and definite. You can add as many integrals as you wish to the user-defined section.

This chapter covers:

- **Using the Integral Tables**
- □ Choosing a Section
- □ Solving an Integral
- □ Storing User-Defined Integrals

Using the Integral Tables

To get to the Integral Tables, follow these steps:

- Press 🔄 LIBRARY to display all libraries available to your HP 48SX.
- 2 Find and press **CALCU** to display the Calculus Pac Library menu.
- **O** Press the first softkey, **CALCU**, to start the Calculus Pac interactive menus.
- At the Main menu, make sure the pointer is at "Integral Tables" and press ENTER:

The Integration Tables menu lists the six sections of integrals stored in the Calculus Pac. A section is selected by moving the pointer to it and pressing ENTER.

Items in the Integral Tables Menu

Each item in the Integral Tables menu is briefly described below and is discussed in detail in the various sections of this chapter.

Item	Description
User-Defined	User-defined indefinite and definite integrals.
Rational	Indefinite integrals involving rational arguments.
Irrational	Indefinite integrals involving irrational arguments.
Trig/Hyperbolic	Indefinite integrals involving trig/hyp arguments.
Exp/Logarithmic	Indefinite integrals involving exp/log arguments.
Definite	Definite integrals.

Integral Tables Menu Items

Integral Tables Menu Operations

Screen	Softkeys					
Integral Table	MAIN	→STK	PRINT	VIEW	FONT	UP

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for CONE or ALL to select items, and then sends those items to an IR printer.
-stk	Prompts for CONE or ALL to select items, and then copies those items to the stack.
UP	Returns to the Main menu.
VIIIEW	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.
ATTN	Quits the Calculus Pac to the HP 48SX stack.
ENTER	Moves down one level in the menu structure, entering the se- lected integral section.

Choosing a Section

Each of the six sections of integrals contains a group of related integrals. Each integral can be displayed in EquationWriter or text format, copied to the stack, or solved, indefinitely or definitely. You can also search for a specific integral using the search mode. (For more information, see "Using the Search Mode" in Chapter 1.) The user-defined integral section behaves identically to all other sections, once you have entered your own integrals.

Example: Investigate the section of integrals with forms containing exponentials. To do this, make sure the pointer is at "Exp/Logarithmic" and press ENTER:

This particular section contains thirteen integrals.

Viewing an Integral

Example (cont.): View the third integral in this section in EquationWriter format. To do this, make sure the pointer is at the third equation and press $\boxed{\text{EMER}}$. After a brief delay, the integral will be displayed in EquationWriter format:

EXP/LOGARITHMIC

$$\int EXP(A \cdot X) dX = \frac{EXP(A \cdot X)}{A}$$
Press center: to return to list ...

When you have finished viewing the integral, press **ENTER** or **ATIN** to return to the integration section menu. Many integrals are too large for the screen, and will be displayed with the cursor keys activated for scrolling purposes.

<u>WARNING</u>: While the HP 48SX is building the EquationWriter format of an integral, key presses will cause strange behavior, resulting in no display of the equation. Therefore, do not press any keys until the integral has been drawn, erased, and redrawn with the accompanying messages. If you change your mind during a long integral build, press *will* to abort the build process and return to the integral screen.

Integral Section Menu Operations

Screen	Softkeys					
Integral Sect.	MAIN	→STK	PRINT	SOLVE	FONT	UP

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for ONE or ALL to select items, and then sends those items to an IR printer.
SOLVE	Solves the integral selected by the pointer.
-STK	Prompts for CONE or CALL to select items, and then copies those items to the stack. The items are placed in a list if CALL was chosen.
UP	Returns to the Integral Tables menu.
ATTN	Quits the Calculus Pac to the HP 48SX stack.
ENTER	Displays the integral selected by the pointer in the EquationWriter.
	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.

Solving an Integral

The integral solving process is one of substitution and algebraic simplification.

Example (cont.): To solve the third integral, make sure the pointer is at it and press **SOLVE**.

Selecting Indefinite or Definite

The first step in solving an integral is choosing the type of integration to perform. You can perform either definite or indefinite integrations. If you choose to perform an indefinite integration, then a constant of integration will be added to the final result.

Example (cont.): Perform a definite integration by pressing DEFIN

Entering Limits of Integration

If you choose to perform a definite integration, you will be prompted to enter the limits of integration. Limits can be real numbers, variables, or expressions. This means you can integrate from 0 to 1, or from A to B, or even from sin(t) to cos(t+u), provided that none of the variables used in the limits are identical to the variable of integration, which is always X.

Example (cont.): Integrate from 0 to 10. Type 0 set 10:

Press ENTER to accept those limits of integration.

<u>NOTE</u>: Be sure to enclose *symbolic* limits within tic marks (') and to set Radians mode for correct trigonometric results.

Entering Values of Constants

When solving an integral (either indefinitely or definitely), you must specify values for all the unknown constants in the integral. This does *not* include the variable of integration, for which you do not enter a value. These constants must be constant with respect to the variable of integration, X. Like the limits of integration, the constants can be real numbers, variables, or expressions.

Example (cont.): Set the value of A to tan(T), where T is a constant. Type TTAN \square T:

RAD ALG PR	G
Enter constants	-
A A	
<pre>(real/cmplx/var/eqn</pre>)
'TAN(T)'	
€SKIP SKIP÷ €DEL DEL÷ INS ■ 45	ſΚ

Press ENTER to accept that constant value.

<u>NOTE</u>: If you wish to enter a variable as a limit or a constant, the surrounding tic marks are optional. For example, T can be entered as 'T' or T.

43

Viewing the Result

After the limits and constants have been specified, the integration will be performed and the desired result displayed:

The result can be viewed in the EquationWriter, copied to the stack, or printed on an IR printer. When you have finished viewing the result, press **UP** to return to the integral section menu, **MAIN** to return to the Main menu, or **MIN** to quit the Calculus Pac.

(For information about simplifying the result, see "SIMPL: Symbolic Simplification" in Chapter 8.)

Screen	Softkeys					
Result Screen	MAIN	→STK	PRINT	VIEW	FONT	UP.

Result	Screen	Operati	ions
--------	--------	---------	------

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for ONE or ALL to select items, and then sends those items to an IR printer.
- STK	Prompts for CONE or CALL to select items, and then copies those items to the stack. The items are placed in a list if CALL was chosen.
UP	Moves up one level in the menu structure, returning to the integral section.
VIEW	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.
ATTN	Quits the Calculus Pac to the HP 48SX stack.
ENTER	Displays the result in the EquationWriter.

Storing User-Defined Integrals

To add an integral to the user-defined section of the Integral Tables, follow these steps:

- Go to the HP 48SX stack. (If necessary, press and to quit the interactive menus.)
- 2 Enter or recall the integral you wish to store to level 1 of the stack. The syntax of the integral must satisfy the following conditions:
 - ① The integral must be entered as an equation. It can be entered with the HP 48SX EquationWriter and copied to the stack. (For more information, see Chapter 16 of the HP 48SX Owner's Manual, "The Equation Writer Application.") The equation must include an equal sign with an integral on the left side and an expression on the right side representing the solution of the integral.

<u>NOTE</u>: The Calculus Pac does not *solve* arbitrary integrals—it merely stores them for reference and provides substitution and evaluation help. When entering a new user-defined integral, you must derive or look up the solution to the integral and specify it as a part of the equation to be stored.

- ② The variable of integration should be an uppercase X. If the variable of integration is not X, **INDEE** or **DEFIN** will automatically convert it to X during the storage process, but an error will occur if X appears elsewhere in the integral.
- ③ Valid integrals always require limits of integration, but the limits will be ignored if you store the integral in an indefinite form with INDEF (see below).
- ④ To store a constraint label with the integral (such as $a \neq 1$), enter the integral as an equation and the constraint label as a string and then press [PRC] **COBJ ■TAG** to tag the integral with the string.
- To store the integral in an indefinite form (ignoring the limits of integration), press INDEE; to store the integral in a definite form (preserving the limits of integration), press DEEIN.

(For more information, see "INDEF: Store Indefinite Integral" and "DEFIN: Store Definite Integral" in Chapter 9.)

Example: To store the indefinite integral $\int \cos(x) dx = \sin(x)$, press \Box and

 $0 \ge 0 \ge 0 \ge 0 \ge 0 x \ge 0 x =$

Chapter 5

Limit Analysis

Limit Analysis includes interactive methods to examine limit behavior of functions, sequences, series, and recursion relations.

This chapter covers:

- Using Limit Analysis
- Parameter Screen Tips
- Functions
- □ Sequences
- □ Series (Partial Sums)
- Recursion Relations

Using Limit Analysis

To get to Limit Analysis, follow these steps:

- Press 🔄 LERARY to display all libraries available to your HP 48SX.
- **2** Find and press **CALCU** to display the Calculus Pac Library menu.
- **O** Press the first softkey, **CALCU**, to start the Calculus Pac interactive menus.
- At the Main menu, make sure the pointer is at "Limit Analysis" and press ENTER:

The Limit Analysis menu lists the four types of limit analysis performed by the Calculus Pac. A type is selected by moving the pointer to it and pressing ENTER.

Items in the Limit Analysis Menu

Each item in the Limit Analysis menu is briefly described below and is discussed in detail in the various sections of this chapter.

ltem	Description
Functions	Displays the parameter screen for functions, which controls analysis of 1–3 functions approaching a target point from the left or right.
Sequences	Displays the parameter screen for sequences, which controls analysis of 1–3 sequences, sweeping from a start index to a stop index.
Series	Displays the parameter screen for series, which controls analysis of the partial sums of 1–3 series, sweeping from a start index to a stop index.
Recursions	Displays the parameter screen for recursion rela- tions, which controls analysis of 1–3 recursion rela- tions, starting from an initial point.

Limit Analysis Menu Items

Limit Analysis Menu Operations

Screen	Softkeys					
Limit Anal.	MAIN	→STK	PRINT	VIEW	FONT	UP

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for ONE or ALL to select items to print.
⇒STK	Prompts for CONE or CALL to select items, and then copies those items to the stack.
UP	Returns to the Main menu.
VIEW	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.
ATTN	Quits the Calculus Pac to the HP 48SX stack.
ENIER	Moves down one level in the menu structure, displaying the parameter screen for the analysis selected by the pointer.

Parameter Screen Tips

Each of the four types of limit analysis starts at a parameter screen, where the specific functions/sequences/series/recursion relations are entered, along with other information about the particular analysis to be performed, including starting or ending points and approach sides.

Entry Tips

Here are some useful things to know about entering or editing parameters:

- To enter or edit the value of a parameter, move the pointer to it and press ENTER. After entering or editing the value of a parameter, press ENTER to accept the new value and return to the element parameter screen.
- Once you have begun entering or editing a parameter value, to abort the change, press ATN to clear the command line (if necessary) and then press ENER or ATN to return to the analysis parameter screen without changing the parameter value.
- ☐ You only need to enter values for those parameters that initially display, "Press ENTER." Other parameters (e.g., the initial index) will be given default values (e.g., 1) which you may modify if you wish.
- □ Make sure to place tic marks (') around symbolic arguments.
- □ Some HP 48SX modes can be changed at the prompts where parameter values are entered (e.g., pressing 🔄 🔤 will toggle Radians mode).
- After entering all parameters, press **CALC** to begin the actual analysis.

Run-Time Modes

Each type of analysis can be run in one of two modes:

- □ Single-Step Mode: This mode of analysis is single-stepped by pressing any key except ATTN, which terminates the analysis. Pressing STO at any step copies the current values to the stack and continues to the next step. This is the default run-time mode for function analysis.
- Continuous Mode: This mode of analysis will continue to run until either the stop condition is satisfied or ATTN is pressed. At the final values screen, pressing STO copies the final values to the stack.

To toggle between the two modes, move the pointer to "Mode" and press ENTER.

Functions

From one to three functions of X are specified, with a target point and approach side. The value of X is then swept toward the target point^{*}, while the values of X and the functions are displayed on-screen.

<u>NOTE</u>: Although the function limit analysis examines a number of points *close* to the target point, the results do not guarantee anything about the actual limit at the target point.

Make sure the pointer is at "Functions" and press ENTER:

You should now enter or edit the parameter values. When you have finished, press **CALC** to run the analysis, or at any time press **UP** to return to the Limit Analysis menu or **MTN** to quit the Calculus Pac.

Here are specific descriptions of these parameters:

- **Target Point**: Must be a real number.
- \Box F(X), G(X), H(X): Must be equations which are either constant or functions of one variable, X.
- □ Approach Side: LEFT or RIGHT. Toggle by pressing ENER.
- **Mode:** Continuous or Single-Step. Toggle by pressing **ENER**.

Example: Find $\lim_{x\to 0^-} \frac{\sin(x)}{x}$. To do this, enter 0 as the target point and 'SIN(X)/X' as F(X). (If necessary, press ADD while entering F(X) to enter Radians mode.) Once the parameters have been specified, press ADD to run the analysis. At each step, press NIER to continue, STO to copy the values to the stack and continue, or ADD to terminate the analysis. This analysis appears to indicate that the limit is 1.

^{*} X is swept from *target* – 1 up to *target* – 1×10^{-10} or from *target* + 1 down to *target* + 1×10^{-10} in 10 steps, depending on the approach side.

Sequences

From one to three sequence coefficients (functions of N) are specified, with a start index and stop index. The value of N is then swept from the start index to the stop index, while the values of N and the sequences are displayed on-screen.

Make sure the pointer is at "Sequences" and press ENTER:

You should now enter or edit the parameter values. When you have finished, press **CALC** to run the analysis, or at any time press **UP** to return to the Limit Analysis menu or **ATN** to quit the Calculus Pac.

Here are specific descriptions of these parameters:

- Start Index, Stop Index: Must be positive integers, and the stop index must be greater than or equal to the start index.
- AN, BN, CN: Must be equations which are either constant or functions of one variable, N.
- □ Mode: Continuous or Single-Step. Toggle by pressing ENTER.

Example: Examine the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}_{n=1}^{100}$ for convergence or diver-

gence. To do this, enter 100 as the stop index and $(1+1/N)^N$ as AN. When finished, the screen should appears as follows:

Once the parameters have been specified, press **CALC** to run the analysis. The value of N will be swept from 1 to 100, and the value of AN will be shown at each point. Although it is slightly ambiguous for such small values of N, the sequence does in fact converge to a limit of e, or 2.7182.... This can be checked by setting the start and stop indices to much larger values, such as 10000 or so.

Series (Partial Sums)

From one to three series (functions of N) are specified, with a start index and stop index. The value of N is then swept from the start index to the stop index, while the values of N and the series partial sums are displayed on-screen.

Make sure the pointer is at "Series" and press ENTER:

You should now enter or edit the parameter values. When you have finished, press **CALC** to run the analysis, or at any time press **UP** to return to the Limit Analysis menu or **ATTN** to quit the Calculus Pac.

Here are specific descriptions of these parameters:

- □ Start Index, Stop Index: Must be positive integers, and the stop index must be greater than or equal to the start index.
- □ AN, BN, CN: Must be equations which are either constant or functions of one variable, N.
- □ Mode: Continuous or Single-Step. Toggle by pressing ENTER.

Example: Compare the series $\sum_{n=1}^{100} \frac{1}{n}$, $\sum_{n=1}^{100} \frac{1}{n^2}$, and $\sum_{n=1}^{100} \frac{1}{n^3}$. To do this, enter

100 as the stop index, '1/N' as AN, '1/N^2' as BN, and '1/N^3' as CN. When finished, the screen should appears as follows:

Once the parameters have been specified, press **CALC** to run the analysis. The value of N will be swept from 1 to 100, and the partial sums of AN, BN, and CN will be shown at each point. From this analysis, it appears that AN diverges and that BN and CN converge, with CN converging much more quickly than BN.

Recursion Relations

From one to three recursion relations (functions of X) are specified, with an initial point. The initial point is used as the initial value of X, from which values of F(X), G(X), and H(X) are calculated. Then, at each successive step, a new value of F(X), G(X), and H(X) is calculated, using the prior value of F(X), G(X), or H(X), respectively, as the value of X. For example, $f_1 = f(x_0)$, while $f_2 = f(f_1)$. At each step, the values of N (the iteration) and the recursion relations are displayed on-screen.

Make sure the pointer is at "Recursions" and press ENIER:

You should now enter or edit the parameter values. When you have finished, press **CALC** to run the analysis, or at any time press **UP** to return to the Limit Analysis menu or **ATR** to quit the Calculus Pac.

Here are specific descriptions of these parameters:

- □ Initial Point: Must be a real number.
- \Box F(X), G(X), H(X): Must be equations which are either constant or functions of one variable, X.
- **Mode:** Continuous or Single-Step. Toggle by pressing **ENIER**.

54 5: Limit Analysis

Chapter 6

Constant Library

The Constant Library lists 43 universal constants for quick reference. Constant values can be displayed on the screen, copied to the stack, or printed on an IR printer, either one at a time or all at once.

This chapter covers:

- Using the Constant Library
- Viewing a Constant

Using the Constant Library

To get to the Constant Library, follow these steps:

- Press 🔄 LIBRARY to display all libraries available to your HP 48SX.
- **2** Find and press **CALCU** to display the Calculus Pac Library menu.
- **O** Press the first softkey, **CALCU**, to start the Calculus Pac interactive menus.
- At the Main menu, make sure the pointer is at "Constant Library" and press ENTER:

Viewing a Constant

Browse through the list to find a constant, or use the search mode. When you have found the desired constant, press ENER to display the value on a full screen, ESTK to copy the value to the stack, or ERINT to print the value.

Example: Look up the value of the Stefan-Boltzmann constant. Type \bigcirc \bigcirc \bigcirc S ENTER to search for the letter σ . Then press ENTER to view the value:

Constant Library σ Stefan-Boltzmann 5.67051E-8

PRESS CENTER) TO RETURN TO LIST ...

When you have finished viewing the value, press **ENTER** or **ATIN** to return to the Constant Library. When you have finished with the Constant Library, press **UP** or **MATIN** to return to the Main menu, or **ATIN** to quit the Calculus Pac.

Constant Library Operations

Screen	Softkeys					
Constant Lib.	MAIN	→STK	PRINT	UNITS	FONT	UP

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for ONE or ALL to select items to print.
⇒STK	Prompts for ONE or FALL to select items, and then copies those items to the stack.
UNITS	Pressing this key toggles units, stripping units from or ap- pending units to all values.
UP	Returns to the Main menu.
ATTN	Quits the Calculus Pac to the HP 48SX stack.
ENTER	Displays the constant label and value, expanded to a screen.
	Displays entire text of an item too wide to fit on the screen.

Chapter 7

Reference Data

Reference Data includes tables of the Greek alphabet, standard SI prefixes, trigonometric and hyperbolic functions, pictures, and relations, and vector formulas.

This chapter covers:

- Using Reference Data
- Greek Alphabet
- □ SI Prefixes
- □ Trig/Hyp Definitions
- □ Trig/Hyp Pictures
- □ Trig Relations
- Vector Formulas

Using Reference Data

To get to Reference Data, follow these steps:

- Press 🔄 LIBRARY to display all libraries available to your HP 48SX.
- 2 Find and press **CALCU** to display the Calculus Pac Library menu.
- **3** Press the first softkey, **CALCU**, to start the Calculus Pac interactive menus.
- At the menu, make sure the pointer is at "Reference Data" and press ENER:

The Reference Data menu lists the six areas of reference data included in the Calculus Pac. An area is selected by moving the pointer to it and pressing ENER.

Items in the Reference Data Menu

Each item in the Reference Data menu is briefly described below and is discussed in detail in the various sections of this chapter.

Item	Description
Greek Alphabet	Uppercase and lowercase Greek letters.
SI Prefixes	Commonly used SI prefixes.
Trig/Hyp Definitions	Definitions of the basic trigonometric and hyper- bolic functions.
Trig/Hyp Pictures	Graphs of basic trigonometric and hyperbolic func- tions.
Trig Relations	Common trigonometric relations.
Vector Formulas	Common vector formulas involving dot products, cross products, divergence, curl, and gradient.

Reference Data Menu Items

Reference Data Menu Operations

Screen	Softkeys					
Refer. Data	MAIN	→STK	PRINT	VIEW	FONT	UP

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for ONE or ALL to select items to print.
=STIX	Prompts for ONE or ALL to select items, and then copies those items to the stack.
UP	Returns to the Main menu.
VIEW	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.
ATTN	Quits the Calculus Pac to the HP 48SX stack.
ENTER	Moves down one level in the menu structure, displaying the data section selected by the pointer.

Greek Alphabet

Make sure the pointer is at "Greek Alphabet" and press ENTER:

ALPHA	Aα	IDT	Ĥ	I.	RHO	Pr
BETA	≜B.	KAI	PPA	ĶĶ	SIGM	A ฐ 🏾
GHMM DEI TA	μţχ	LHI	1801	1 (1)	INDE	nu 1 1
EPSILOI	NĚĒ	NU		ŇΫ.	PHI	° ₫4
ZETA	ΞZ	XI		¥Ξ	CHI	īΧ
ETA	Жŋ	DM	ICRO	NO	PSI	Ψ4
THETR	6 M	PI		Π	OME	3A ω <u>ι</u> ,
PRESS	CENTE	R]	TO	RETUR	N TO	LIST

This screen is a picture displaying representations of all of the uppercase and lowercase Greek letters. Many of these characters are available from the HP 48SX keyboard, but not all of them. To get a printed copy of this screen, press $\boxed{ON} - \boxed{MTH}$. Press \boxed{ENTER} or \boxed{ATTN} to return to the Reference Data menu.

SI Prefixes

Make sure the pointer is at "SI Prefixes" and press ENTER:

-	SI Prefixes	
→EXA	(E): 10E18	
PETA	(P): 10E15	
GIGO	(G) 10512	
MEGA	(M): 10E6	
KILD	(K): 10E3	
HECTO	(H): 10E2	
DEKA	(DA): 10	_
MAIN	•STK PRINT VIEW FONT UP	

Press ENTER to display a prefix and value on a full screen, **ESTK** to copy a prefix to the stack, or **ERINT** to print a prefix on an IR printer.

When you have finished browsing the list, press **EUP** to return to the Reference Data menu, **MATN** to return to the Main menu, or **MTN** to quit the Calculus Pac.

Trig/Hyp Definitions

Make sure the pointer is at "Trig/Hyp Definitions" and press ENTER:

Trig/Hyp Definitions
→SIN(0)=Y/R
COS(0)=X/R
TAN(0)=Y/X
SEC(0)-D/0
SINH(U)=(EXP(U)-EXP(-U))/2
COSH(U)=(EXP(U)+EXP(-U))/2
MAIN +STK PRINT PICT FONT UP

Browse through the list to find the desired definition. Press **ENER** to display the definition in the EquationWriter, **ESTK** to copy the definition to the stack, or **ERINT** to print the definition on an IR printer. Press **ENET** to view an illustrative diagram.

When you have finished viewing the definitions, press **UP** to return to the Reference Data menu, **MATIN** to return to the Main menu, or **MIN** to quit the Calculus Pac.

Using COT, SEC, CSC, etc.

The HP 48SX does not include COT, SEC, CSC, ACOT, ASEC, ACSC, COTH, SECH, CSCH, ACOTH, ASECH, or ACSCH functions, but the Calculus Pac defines them as commands so they will work correctly when used in algebraics or programs. For more information, see "Trigonometric Commands" and "Hyperbolic Commands" in Chapter 8.)

Trig/Hyp Pictures

Make sure the pointer is at "Trig/Hyp Pictures" and press ENTER:

Browse through the list to find the desired picture and press ENTER to view it. When you have finished viewing the picture, press ATTN or ENTER to return to the Trig/Hyp Pictures menu, and then press EUPE to return to the Reference Data menu, MATIN to return to the Main menu, or ATTN to quit the Calculus Pac.

Relations

Make sure the pointer is at "Trig Relations" and press ENIER:

Browse through the list to find the desired relation. Press **ENER** to display the relation in the EquationWriter, **ESTK** to copy the relation to the stack, or **PRINT** to print the relation on an IR printer. Press **PICT** to view an illustrative diagram.

When you have finished viewing the relations, press **UP** to return to the Reference Data menu, **MALN** to return to the Main menu, or **MALN** to quit the Calculus Pac.

Vector Formulas

Make sure the pointer is at "Vector Formulas" and press ENIER:

Browse through the list to find the desired formula. Press **ENTER** to display the formula in the EquationWriter, **ESTK** to copy the formula to the stack, or **ERINT** to print the formula on an IR printer.

When you have finished viewing the formulas, press **UP** to return to the Reference Data menu, **MATN** to return to the Main menu, or **MTN** to quit the Calculus Pac.

Stack-Based Toolkits

Chapter 8

Function Toolkit

The Function Toolkit organizes 24 of the programmable commands in the Calculus Pac into one menu for easy access from the stack. All of the commands are designed to manipulate functions.

This chapter covers:

- Using the Function Toolkit
- SIMPL: Symbolic Simplification
- **TYLRA:** Taylor Expansion
- PROOT: Polynomial Root-Finder
- **ROOTP:** Roots to Polynomial
- PWISE: Piecewise Function
- **QPWR:** Rational Power of Function
- DELTA: Delta Function
- LOGA: Logarithm, Any Base
- □ NROOT: Nth Roots of a Number
- PINTR: Polynomial Interpolation
- PTSLP: Point-Slope Fit
- □ SPLIN: Cubic Spline Fit
- Trigonometric Functions
- Hyperbolic Functions

Using the Function Toolkit

To get to the Function Toolkit, follow these steps:

- Press 🔄 🖽 rest to display all libraries available to your HP 48SX.
- **2** Find and press **CALCU** to display the Calculus Pac Library menu.
- Press the second softkey, **FUNC**, to display the Function Toolkit menu:

{ HOME }	
4:	
3:	
2:	
1 • Silsief Tyl salesnittisnittelevit	<u>র র চর হার</u>

The Function Toolkit menu lists the 24 programmable commands designed to manipulate functions.

Screen			Softk	eys		
Function Toolkit	SIMPL DELTA COT COTH	TYLRA LOGA SEC SECH	PROOT NROOT CSC CSCH	ROOTP PIINTR ACOT ACOTH	PWISE PTSLP ASEC ASECH	QPWR SPLIN ACSC ACSCH

Function Toolkit Operations

SIMPL: Symbolic Simplification

This command simplifies the input object, if appropriate. Simplification only occurs for algebraics, which may occur arbitrarily deep within nested lists. All other objects are returned unchanged. Algebraic objects are simplified by performing EXPAN twice and COLCT as many times as necessary until the algebraic stops changing between repeated COLCTs.

To simplify the result of a calculation performed while using the interactive menus, follow these steps:

- Press **STK** and then **ONE** to copy the result to the stack. Then press
 ATN to quit the Calculus Pac.
- **2** Press **E** UBARY to display all libraries available to your HP 48SX.
- Find and press **CALCU** to display the Calculus Pac Library menu.
- Press the second softkey, **EUNC**, to display the Function Toolkit menu.
- **6** Press the first softkey, **SIMPL**, to simplify the expression.

Entry Method(s)

Input	Output
1: any object	1: simplified object
'SIMPL(object)'	

Example(s)

Input	Output		
{ 1 'x+x' { [1 2] } } SIMPL	{ 1 '2*x' { [1 2] } }		
'SIMPL(x+x)'	'2*x'		

TYLRA: Taylor Expansion

This command computes a Taylor polynomial of a given function of a given variable to a specified degree about a specified point.

Entry Method(s)

Input	Output
4: function	4:
3: variable (name)	3:
2: degree (integer)	2:
1: point (real)	1: Taylor expansion

Example(s)

Input	Output
'SIN(X)' 'X' 2 2 TYURA	'.909297426826- .416146836547*(X-2)- .454648713413*(X-2)^2'

Note(s)

Example uses Radians mode.

PROOT: Polynomial Root-Finder

This command returns the real or complex roots of a polynomial with real or complex coefficients. Polynomials can be entered either as symbolic expressions (up to 16th order) or as a vector of coefficients (no limit on order). If entered as a symbolic expression, the independent variable must be X. The roots are automatically rounded to 10 digit accuracy. PROOT is the inverse of ROOTP.

Entry Method(s)

Input	Output
1: coefficients (real/complex vector)	1: roots (real/complex vector)
or	요즘 것이 아무렇게 하는 것 같아?
1: polynomial of X	

Example(s)

Input	Output
{ 1 -12 35 -24 } PROOT	[813]
[1-1235-24] PROOT	[813]
'X^3-12*X^2+35*X-24' PROOT	[813]

Note(s)

A polynomial such as $'A^*X^2+B^*X+C'$ is acceptable as input if A, B, and C are defined as real or complex numbers.

Due to round-off error, the roots returned by PROOT may not be exactly correct. To increase the accuracy of a particular root, use the built-in HP 48SX solver to solve the original polynomial algebraic expression for 'X', using the value of the desired root returned by PROOT as a guess. (For more information, see Chapter 17 in the HP 48SX Owner's Manual, "The HP Solve Application.)
ROOTP: Roots to Polynomial

This command returns the polynomial corresponding to the input vector of real or complex roots. ROOTP is the inverse of PROOT. The coefficients are automatically rounded to 8 digit accuracy.

Entry Method(s)

Input	Output
1: roots (real/complex vector)	1: polynomial of X

Example(s)

Input	Output
[813] ROOTP	'X^3-12*X^2+35*X-24'

PWISE: Piecewise Functions

This command executes a series of interactive prompts to define a piecewise function and returns an expression that will be interpreted correctly by the HP 48SX, using the IFTE command. (For more information, see Appendix B, "Piecewise Functions" and "Entering a Piecewise Function" in Chapter 3.)

Entry Method(s)

Input	Output
1:	1: piecewise function

Example(s)

See Appendix B, "Piecewise Functions."

QPWR: Rational Power of Function

This command produces the rational power of a function $F^{\frac{p}{q}}$, in a way that will be interpreted correctly by the HP 48SX, using the XROOT command.

Entry Method(s)

Input	Output
3: function, F	3:
2: numerator, p (integer)	2:
1: denominator, q (integer)	1: rational power of function
'QPWR(F, p, q)'	

Example(s)

Input	Output
125 5 3 QPWR	3125
'QPWR(X,5,2)'	'XROOT(2,X)^5'

Note(s)

First example is $125^{\frac{5}{3}}$. Second example is $X^{\frac{5}{2}}$ and assumes 'X' is undefined.

DELTA: Delta Function

This command produces the delta function $\delta(F,G)$, in a way that will be interpreted correctly by the HP 48SX, using the == command.

Entry Method(s)

Input	Output
2: function, F	2:
1: function, G	1: delta function
'DELTA(F, G)'	

Example(s)

Input	Output
108 DELTA	0
'DELTA(X,8)'	'X==8'

Note(s)

Second example assumes 'X' is undefined.

LOGA: Logarithm, Any Base

This command produces the logarithm of a function to the specified base a.

Entry Method(s)

Input	Output
2: function, F	2:
1: base, a (integer)	1: logarithm, base a
'LOGA(F, a)'	

Example(s)

Input	Output
82 LOGA	3
'LOGA(X,2)' EVAL	'LN(X)/.69314718056'

Note(s)

Second example assumes 'X' is undefined.

NROOT: Nth Roots of a Number

This command produces the *n n*th roots of a real or complex number. The *n*th roots will be returned as a real or complex vector. The *n*th roots are automatically rounded to 10 digit accuracy.

Entry Method(s)

Input	Output
2: number (real/complex)	2:
1: n (integer)	1: roots (real/complex vector)

Example(s)

Input	Output
(2,5) 3 NROOT	[(1.6166388851,.6773444774) (-1.394916967,1.0613781045) (221721918,-1.7387225819)]
42 NROOT	[2-2]

PINTR: Polynomial Interpolation

This command determines the coefficients of the interpolating polynomial of an arbitrarily large number of data points. The order of the polynomial produced is equal to one less than the total number of points, because a precise interpolation is performed. There must be at least two input points, but there is no upper limit on the number of points. The points are input as a complex vector. The coefficients are automatically rounded to 10 digit accuracy.

Entry Method(s)

Input	Output
1: points (complex vector)	1: polynomial of X

Example(s)

Input	Output
$\{(0,1)(2,3)\}$ PINTR	'X+1'
$\{(0,1)(2,3)(3,7)\}$ PINTR	'X^2–X+1'
[(0,1) (2,3) (3,7) (5,10)] PINTR	'-(11/30*X^3)+17/6*X^2- 16/5*X+1'

Note(s)

Third example uses FIX 8 mode. Apply 🔄 🖸 to result.

Due to round-off error and numerical instabilities in the algorithm, the coefficients returned by PINTR may not be exactly correct.

PTSLP: Point-Slope Fit

This command produces a linear function whose graph passes through a given point with a given slope at that point.

Entry Method(s)

Input	Output
2: point (complex)	2:
1: slope (real)	1: linear polynomial of X

Example(s)

Input	Output		
(3,5) 2 PTSLP	'2*X-1'		

SPLIN: Cubic Spline Fit

This command produces the cubic function (spline) whose graph passes through two given points with given slopes at those points.

Entry Method(s)

Input	Output
4: point 1 (complex)	4:
3: slope at point 1 (real)	3:
2: point 2 (complex)	2:
1: slope at point 2 (real)	1: cubic polynomial of X

Example(s)

Input	Output		
(3,5) 2 (6,2) 4 SPLIN	'8/9*X^3-35/3*X^2+48*X-58'		

Note(s)

Apply 🔄 🗝 to result.

Trigonometric Functions

This section covers the functions COT, SEC, CSC, ACOT, ASEC, ACSC, and ACSC, which are the standard trigonometric functions and their inverses. They all have the same types of input and output arguments, so the entry methods and examples are shown only for COT.

Entry Method(s)

Input	Output
1: function, F	1: cotangent
'COT(F)'	

Example(s)

Input	Output		
45 COT	1		
'COT(X)' EVAL	'INV(TAN(X))'		

Note(s)

First example uses Degrees mode.

Second example assumes 'X' undefined.

Hyperbolic Functions

This section covers the functions COTH, SECH, CSCH, ACOTH, ASECH, and ACSCH, which are the standard hyperbolic functions and their inverses. They all have the same types of input and output arguments, so the entry methods and examples are shown only for COTH.

Entry Method(s)

Input	Output		
1: function, F	1: hyperbolic cotangent		
'COTH(F)'			

Example(s)

Input	Output		
45 COTH	1		
'COTH(X)' EVAL	'INV(TANH(X))'		

Note(s)

First example uses Degrees mode.

Second example assumes 'X' undefined.

Chapter 9

Integration Toolkit

The Integration Toolkit organizes seven of the programmable commands in the Calculus Pac into one menu for easy access from the stack. All of the commands are designed to numerically approximate integrands and store user-defined integrals.

This chapter covers:

- □ Using the Function Toolkit
- □ LEFT: Left Rectangles
- □ RIGHT: Right Rectangles
- □ MIDPT: Midpoint Rectangles
- TRAPZ: Trapezoidal Method
- □ SIMPS: Simpson's Rule
- □ INDEF: Store Indefinite Integral
- DEFIN: Store Definite Integral

Using the Integration Toolkit

To get to the Integration Toolkit, follow these steps:

- Press 🔄 TRAFF to display all libraries available to your HP 48SX.
- **2** Find and press **CALCU** to display the Calculus Pac Library menu.
- O Press the third softkey, **INTC**, to display the Integration Toolkit menu:

(HOME	: }
4:	
2	
1:	
LEFT	NGHT MIDPT TRAP2 SIMPS INDE

The Integration Toolkit menu lists the seven programmable commands designed to numerically approximate integrands and store user-defined integrals.

Integration Toolkit Operations

Screen			Softk	eys		
Integration Toolkit	LEFT DEFIN	RIGHT	MIDPT	TRAPZ	SIMPS	INDEF

LEFT: Left Rectangles

This command calculates the Riemann lower sum of the definite integral of a function over a specified closed interval [x,y] and number of partitions n. The partition endpoints x and y should resolve to real numbers upon the application of \rightarrow NUM, so symbolic values like ' π ' are acceptable.

Input	Output
4: interval start, x (real)	4:
3: interval end, y (real)	3:
2: function of X, F	2:
1: partitions, n (integer)	1: Riemann lower sum
'LEFT(x, y, F, n)'	

Entry Method(s)

Example(s)

Input	Output
0 'π/2' 'SIN(X)' 10 [EEE]	.91940317002
'LEFT(0,π/2,SIN(X),10)' [EVAL	.91940317002

Note(s)

RIGHT: Right Rectangles

This command calculates the Riemann upper sum of the definite integral of a function over a specified closed interval [x,y] and number of partitions n. The partition endpoints x and y should resolve to real numbers upon the application of \rightarrow NUM, so symbolic values like ' π ' are acceptable.

Input	Output
4: interval start, x (real)	4:
3: interval end, y (real)	3:
2: function of X, F	2:
1: partitions, n (integer)	1: Riemann upper sum
'RIGHT(x, y, F, n)'	

Entry Method(s)

Example(s)

Input	Output
0 'π/2' 'SIN(X)' 10 RIGHT	1.0764828027
'RIGHT($0,\pi/2$,SIN(X),10)' EVAL	1.0764828027

Note(s)

MIDPT: Midpoint Rectangles

This command calculates the Riemann midpoint sum of the definite integral of a function over a specified closed interval [x,y] and number of partitions n. The partition endpoints x and y should resolve to real numbers upon the application of \rightarrow NUM, so symbolic values like ' π ' are acceptable.

Input	Output
4: interval start, x (real)	4:
3: interval end, y (real)	3:
2: function of X, F	2:
1: partitions, n (integer)	1: Riemann midpoint sum
'MIDPT (x, y, F, n) '	

Entry Method(s)

Example(s)

Input	Output
0 'π/2' 'SIN(X)' 10 MI DPT	1.00102882415
'MIDPT $(0,\pi/2,SIN(X),10)$ ' EVAL	1.00102882415

Note(s)

TRAPZ: Trapezoidal Method

This command approximates the value of the definite integral of a function over a specified closed interval [x,y] and number of partitions n, using the trapezoidal method. The partition endpoints x and y should resolve to real numbers upon the application of \rightarrow NUM, so symbolic values like ' π ' are acceptable.

Input	Output
4: interval start, x (real)	4:
3: interval end, y (real)	3:
2: function of X, F	2:
1: partitions, n (integer)	1: Trapezoidal method sum
'TRAPZ(x, y, F, n)'	

Entry Method(s)

Example(s)

Input	Output
0 'π/2' 'SIN(X)' 10 TRAPZ	.99794298636
'TRAPZ(0,π/2,SIN(X),10)' [[Mai]	.99794298636

Note(s)

SIMPS: Simpson's Rule

This command approximates the value of the definite integral of a function over a specified closed interval [x,y] and number of partitions n, using Simpson's Rule. The partition endpoints x and y should resolve to real numbers upon the application of \rightarrow NUM, so symbolic values like ' π ' are acceptable.

Input	Output
4: interval start, x (real)	4:
3: interval end, y (real)	3:
2: function of X, F	2:
1: partitions, n (integer)	1: Simpson's Rule sum
'SIMPS(x, y, F, n)'	

Entry Method(s)

Example(s)

Input	Output
0 'π/2' 'SIN(X)' 10 SIMPS	1.00000339223
'SIMPS $(0,\pi/2,SIN(X),10)$ ' [EVAL]	1.00000339223

Note(s)

INDEF: Store Indefinite Integral

This command stores indefinite integrals into the user-defined integrals section of the Integral Tables in the Calculus Pac. The integrals can optionally be tagged with a string, to store variable constraint information. The integrals are stored in the global variable 'USRINTEG' in the 'SPARCOM' directory, and are accessible to the Physics Pac, the Calculus Pac, and future revisions of the Mathematics Pac. (For more information, see "User-Defined Integrals" in Chapter 5.)

Entry Method(s)

Input	Output
1: 'integral=answer' (equation)	1:
1: :constraint: 'integral=answer' (tagged equation)	1:

Example(s)

Input	Output
$\int (L,U,TAN(A^*X)^2,X) = 1/A^*TAN(A^*X)-X'$ indep	1:
$B>0: \int (L,U,B^{A*X},X) = B^{A*X}/(A*LOG(B))$ indep	1:

Note(s)

To tag an integral with a string, place the integral in level 2, the string in level 1, and press **PRG DOBJ TAG**.

DEFIN: Store Definite Integral

This command stores definite integrals into the user-defined integrals section of the Integral Tables in the Calculus Pac. The integrals can optionally be tagged with a string, to store variable constraint information. The integrals are stored in the global variable 'USRINTEG' in the 'SPARCOM' directory, and are accessible to the Physics Pac, the Calculus Pac, and future revisions of the Mathematics Pac. (For more information, see "User-Defined Integrals" in Chapter 5.)

Entry Method(s)

Input	Output
1: 'integral=answer' (equation)	1:
1: :constraint: 'integral=answer' (tagged equation)	1:

Example(s)

Input	Output
$\int (0,1,LOG(X)/(1+X),X) = -\pi^2/12'$ Defined	1:

Note(s)

To tag an integral with a string, place the integral in level 2, the string in level 1, and press **PRG OBJ TAG**.

92 9: Integration Toolkit

Chapter 10

Plotting Toolkit

The Plotting Toolkit contains commands from the Calculus Pac oriented at enhancing the graphics capabilities of your HP 48SX. The commands are organized into the Plotting Toolkit and the PLOT2, PLOT3, and DIFEQ menus.

This chapter covers:

- □ Using the Plotting Toolkit
- PLOT2: Sparcom PLOT2 Menu
- PLOT3: Sparcom PLOT3 Menu
- DIFEQ: Sparcom DIFEQ Menu
- GRF2: Sparcom 2D Graphics Environment
- GRF3: Sparcom 3D Graphics Environment
- □ PKEY: Sparcom Plotting Keys

Also included are sections on the enhanced Plot menu and a comparison chart:

- □ The Enhanced Plot Menu
- □ HP 48SX Plotting vs. Sparcom 2D & 3D Plotting

Using the Plotting Toolkit

To get to the Plotting Toolkit, follow these steps:

- Press 🔄 LERARY to display all libraries available to your HP 48SX.
- 2 Find and press **CALCU** to display the Calculus Pac Library menu.
- **3** Press the fourth softkey, **PLOT**, to display the Plotting Toolkit menu:

{ HOME }	
4:	
3:	
2	
PLOTE PLOTE OFER	GRF2 GRF3 PKEY

The Plotting Toolkit menu accesses the Sparcom PLOT2, PLOT3, and DIFEQ menus, the Sparcom 2D and 3D Graphics Environments, and the Sparcom Plotting Keys.

Plotting Toolkit Operations

Screen	Softkeys					
Plotting Toolkit	PLOT2	PLOT3	DIFEQ	GRF2	GRF3	PKEY

PLOT2: Sparcom PLOT2 Menu

See "PLOT2: Sparcom PLOT2 Menu" in Chapter 11.

PLOT3: Sparcom PLOT3 Menu

See "PLOT3: Sparcom PLOT3 Menu" in Chapter 12.

DIFEQ: Sparcom DIFEQ Menu

See "DIFEQ: Sparcom DIFEQ Menu" in Chapter 13.

GRF2: Sparcom 2D Graphics Environment

See "GRF2: Sparcom 2D Graphics Environment" in Chapter 11.

GRF3: Sparcom 3D Graphics Environment

See "GRF3: Sparcom 3D Graphics Environment" in Chapter 12.

PKEY: Sparcom Plotting Keys

This command installs or removes the Sparcom Plotting Keys. The Sparcom Plotting Keys redefine **G (BAR)**, **(G) (POT)**, and **(P) (POT)** with user-key assignments to support the Sparcom 2D and 3D Graphics Environments in a transparent fashion, without inhibiting normal use of your HP 48SX. (For more information, see Chapter 11, "2D Plotting," Chapter 12, "3D Plotting," and Chapter 15 of the HP 48SX Owner's Manual, "Customizing the Calculator.")

There are two ways to install the Sparcom Plotting Keys:

- Press Pre
- Press Press CALCU PLOT PKEY to install (or remove) the Sparcom Plotting Keys. If the Sparcom Plotting Keys are *not* installed, PKEY will install them and turn on User mode. If the Sparcom Plotting Keys *are* installed, PKEY will remove them and turn off User mode.

When the Sparcom Plotting Keys are installed and User mode is turned on, the following keys are redefined:

Key	Action
(GRAPH	Executes GRF2 to enter the Sparcom 2D Graphics Environment. (Normally executes GRAPH to enter the HP 48SX Graphics Environment.)
GRAPH	Executes GRF3 to enter the Sparcom 3D Graphics Environment. (Normally does nothing.)
PLOT	Displays the enhanced Plot menu. (Normally displays the HP 48SX Plot menu.)
PLOT	Displays the Sparcom PLOT2 menu. (Normally displays the HP 48SX PLOTR menu.)

Sparcom Plotting Keys

Entry Method(s)

Input	Output			
1:	1:			

Note(s)

In algebraic and program entry modes, \square will echo GRF2, \square will jump the cursor to the left edge of the command line, \square will display the enhanced Plot menu, and \square will display the Sparcom PLOT2 menu.

When the Sparcom Plotting Keys are installed, you will not be able to interactively edit the list of user-key assignments returned by RCLKEYS. This is because the objects assigned to keys 34.2, 34.3, 63.2, and 63.3 are system RPL objects and your HP 48SX cannot edit them directly. If you wish to edit the list of user-key assignments, you must either first remove the Sparcom Plotting Keys or you must use commands such as REPL or the Interactive Stack to *indirectly* edit the list without placing it on the command line. If you accidentally attempt to interactively edit the list of user-key assignments when the Sparcom Plotting Keys are installed, you will have to press ON –C to abort the editing operation and return to the stack. (Pressing ON –C will *not* damage user memory, but it *will* clear the stack and return to the HOME directory.)

The Calculus Pac must be installed in your HP 48SX for the Sparcom Plotting Keys to work correctly. If you remove the Calculus Pac while the Sparcom Plotting Keys are installed and your HP 48SX is in User mode, the re-defined keys will behave as if the Sparcom Plotting Keys were not installed. Upon re-installing the Calculus Pac and re-entering User mode, the re-defined keys will resume their customized functions.

The Enhanced Plot Menu

The built-in HP 48SX Plot menu—accessed by pressing Imm—includes the commands necessary to access the HP 48SX PLOTR menu, set the plot type, store an equation into 'EQ', and access the Equation Catalog. The Calculus Pac enables you to *enhance* the Plot menu to include new commands to access the Sparcom PLOT2, PLOT3, and DIFEQ menus.

To enhance the Plot menu, follow these steps:

- Install the Sparcom Plotting Keys. (For more information, see "PKEY: Sparcom Plotting Keys.")
- Make sure User mode is turned on. (For more information, see Chapter 15 of the HP 48SX Owner's Manual, "Customizing the Calculator.")
- **3** Press **I PI** to display the enhanced Plot menu.

When the enhanced Plot menu is displayed, a status message will appear, describing the current plot type and equation (displays assume 'EQ' does not exist):

Because of the similarity between the Plot menu and the enhanced Plot menu, only the *differences* between them are summarized below. For a complete summary, see Chapter 18 of the HP 48SX Owner's Manual, "Basic Plotting and Function Analysis."

Enhanced	Plot	Menu	0	per	ati	ons
			-			

Screen	Softkeys					
Plot Menu	PLOTR	PTYPE	NEW	EDEQ	STEQ	САТ
Plot Menu (Enhanced)	PLOT2 Edeq	PLOT3 STEQ	DIFEQ CAT	PLOTR	PTYPE	NEW

Key	Description
PLOT2	Displays the Sparcom PLOT2 menu for specifying the 2D plot parameters in 'PPAR' and accessing the Sparcom 2D Graphics Environment.
PLOT3	Displays the Sparcom PLOT3 menu for specifying the 3D plot parameters in 'PPAR3' and accessing the Sparcom 3D Graphics Environment.
DIFEQ	Displays the Sparcom DIFEQ menu for plotting differential equations.

HP 48SX Plotting vs. Sparcom 2D & 3D Plotting

Here is a comparison of the HP 48SX Plot application and the Sparcom 2D and 3D plotting routines.

Feature	HP	2D	3D
Automatic plotting demonstrations	No	No	Yes
Plot parameters specified through menu(s) with status message(s)	Yes	Yes	Yes
Supported plot types:			
FUNCTION CONIC POLAR PARAMETRIC TRUTH BAR HISTOGRAM SCATTER FUNC3	Yes Yes Yes Yes Yes Yes Yes	Yes 	- - - - Yes
PCURV3 PSURF3	_	_	Yes Yes
Hidden line removal, viewing box, and xy-plane projection	-	-	Yes
Supports graphs larger than 131 x 64	Yes	Yes	Yes
Zoom operations: XAUTO, X, Y, XAUTO Zoom box	Yes Yes	Yes –	
Jump to any x-value		Yes	-
Center graph at cursor location	Yes	Yes	-
Display cursor coordinates	Yes	Yes	Yes
Trace mode	_	Yes	Yes

Comparison of HP 48SX and Sparcom 2D & 3D Plotting

Function analysis operations:			
ROOT	Yes	Yes	_
ISECT	Yes	-	-
SLOPE	Yes	Yes	-
AREA	Yes	-	_
EXTR	Yes	Yes	-
F(X)	Yes	-	-
F'	Yes	Yes	_
NXEQ	Yes	Yes	-
Graph labeling	Yes	Yes	-
Graph tagging	I	Yes	I
Graphical editing commands:			
DOT+, DOT–, LINE	Yes		_
TLINE, BOX, CIRCL	Yes	-	-
MARK, REPL, SUB, DEL	Yes	-	-

Chapter 11

2D Plotting

2D plotting utilizes the Sparcom 2D Graphics Environment, which provides a powerful way to analyze and trace functions, polar plots, and parametric plots, and the Sparcom PLOT2 menu, which provides a flexible way to specify the 2D plot parameters.

This chapter covers:

- □ Using 2D Plotting
- PLOT2: Sparcom PLOT2 Menu
- GRF2: Sparcom 2D Graphics Environment

Using 2D Plotting

Both the Sparcom 2D Graphics Environment and PLOT2 menu are accessible from the Plotting Toolkit. To get to the Plotting Toolkit, follow these steps:

- Press 🔄 LERARY to display all libraries available to your HP 48SX.
- **2** Find and press **CALCU** to display the Calculus Pac Library menu.
- **3** Press the fourth softkey, **PLOT**, to display the Plotting Toolkit menu:

ł	HOME	3
4	:	
3		
f		
Ċ	LOTZPI	OT3 DIFEQ GRF2 GRF3 PKEY

At this point, press **PLOT2** to display the Sparcom PLOT2 menu or press **GRE2** to enter the Sparcom 2D Graphics Environment.

PLOT2: Sparcom PLOT2 Menu

The Sparcom PLOT2 menu provides a flexible way to specify the 2D plot parameters. (Plot types other than FUNCTION, POLAR, and PARAMETRIC are not supported by the Sparcom PLOT2 menu—for other plot types, use the HP 48SX PLOTR menu.)

The Sparcom PLOT2 menu is nearly identical to the HP 48SX PLOTR menu, so you should familiarize yourself with Chapter 18 of the HP 48SX Owner's Manual, "Basic Plotting and Function Analysis," and Chapter 19, "More About Plotting and Graphics Objects."

Using the Sparcom PLOT2 Menu

There are three ways to access the Sparcom PLOT2 menu from the stack:

- □ Press Plot to display the Sparcom PLOT2 menu. (The Sparcom Plotting Keys must be installed and User mode must be turned on. For more information, see "PKEY: Sparcom Plotting Keys" in Chapter 10.)
- Press PLOT2 to display the enhanced Plot menu and press PLOT2 to display the Sparcom PLOT2 menu. (The Sparcom Plotting Keys must be installed and User mode must be turned on. For more information, see "PKEY: Sparcom Plotting Keys" in Chapter 10.)
- Press () CALCU PLOT PLOT2 to display the Sparcom PLOT2 menu.

There is one way to access the Sparcom PLOT2 menu from the interactive menus:

Press Press Plotting: 2D w/ Trace," press ENER to display the information screen about 2D plotting, and press PLOT2 menu. (This will automatically install the Sparcom PLOT2 menu. (This will automatically install the Sparcom Plotting Keys and turn on User mode. For more information, see "PKEY: Sparcom Plotting Keys" in Chapter 10.)

When the Sparcom PLOT2 menu is displayed, if the plot type is FUNCTION, POLAR, or PARAMETRIC, a status message will also appear, describing the plot type, current equation(s), independent variable (with plotting range, if specified), and display ranges in the x- and y-axis directions:

However, if the plot type is *not* FUNCTION, POLAR, or PARAMETRIC, an error message will be displayed, because only those three plot types are supported by the Sparcom PLOT2 menu and 2D Graphics Environment:

Error: Invalid 4:	PPAR	for	PLOT2
3: 2:			
I : Ernse ornwi	AUTO XR	NG YR	NG INDEP

If the plot type is not FUNCTION, POLAR, or PARAMETRIC, you should press **NAT PTYPE** and set the plot type to FUNCTION, POLAR, or PARAMETRIC. Then the status message will appear.

Because of the similarity between the Sparcom PLOT2 menu and the HP 48SX PLOTR menu, only the *differences* between them are summarized below. For a complete summary, see Chapter 18 of the HP 48SX Owner's Manual, "Basic Plotting and Function Analysis."

Sparcom PLOT2 Menu Operations

Screen			Softk	eys		
Sparcom PLOT2 Menu	ERASE DEPN Axes	DRAW PTYPE DRAX	AUTO RES LABEL	XRNG CENT * H	YRNG SCALE * W	IINDEP RESET PDIM

Key	Description
Αυτο	After autoscaling, drawing the axes, and plotting the equa- tion(s), enters the Sparcom 2D Graphics Environment. (Normally enters the HP 48SX Graphics Environment.)
DRAW	After drawing the axes and plotting the equation(s), enters the Sparcom 2D Graphics Environment. (Normally enters the HP 48SX Graphics Environment.)
PTYPE	Displays a plot type menu with only FUNCTION, POLAR, and PARAMETRIC available. (Normally all plot types are available.)

GRF2: Sparcom 2D Graphics Environment

This command invokes the Sparcom 2D Graphics Environment, which provides a powerful way to analyze and trace functions, polar plots, and parametric plots. (Plot types other than FUNCTION, POLAR, and PARAMETRIC are not supported by the Sparcom 2D Graphics Environment—for other plot types, use the HP 48SX Graphics Environment.)

The Sparcom 2D Graphics Environment is very similar to the HP 48SX Graphics Environment, so you should familiarize yourself with Chapter 18 of the HP 48SX Owner's Manual, "Basic Plotting and Function Analysis," and Chapter 19, "More About Plotting and Graphics Objects."

This section covers:

- Using the Sparcom 2D Graphics Environment
- Zoom Operations
- Jumping to Any Value of the Independent Variable
- Centering the Graph at the Cursor Coordinates
- Displaying the Cursor Coordinates
- Tracing an Equation
- Function Analysis Operations
- □ Tagging the Graph
- □ The Contents of 'PPAR'

Using the Sparcom 2D Graphics Environment

There are three ways to access the Sparcom 2D Graphics Environment:

- Plot an equation from the Sparcom PLOT2 menu with **DRAW** or **AUTO**.
- Press Pre
- Press Calcuptor GRF2.

The Sparcom 2D Graphics Environment is summarized below. (For more information, because of the similarity to the HP 48SX Graphics Environment, see Chapter 18 of the HP 48SX Owner's Manual, "Basic Plotting and Function Analysis.")

Sparcom 2D Graphics Environment Operations

Screen			Softk	eys		
Sparcom 2D Graphics Env.	ZOOM TAG	JUMP LABEL	CENT + -	coord Keys	TRACE	FCN

Key	Action			
Centi	Redraws the graph with the current cursor position at the center of the display, even if cursor is off-screen. If in Trace mode, the exact equation value is used.			
	Turns on coordinate display in the menu area. Press \mp or any softkey to restore the menu. The coordinates can be copied to the stack by pressing ENER or \bigcirc ENER.			
FCN	Displays the Sparcom 2D Function Analysis Menu (subset of the HP 48SX GRAPHICS FCN menu).			
JUMP	Prompts for a new value for the independent variable $(x, \theta, or t, depending on the plot type)$ and moves the cursor to that value on the current equation, redrawing the graph if necessary.			
Keys	Turns off menu to show more of the graph. Press – or any softkey to restore the menu.			
LABEL	Adds axis labels to the graph.			
TAG	Adds a circular tag to the graph at the cursor position.			
TRACE	Toggles Trace mode on and off. In Trace mode, the cursor hugs the current equation, \square and \square decrease and increase the independent variable, and \square and \square switch between equations if 'EQ' contains more than one equation.			
ZOOM	Displays the Sparcom 2D Zoom menu (identical to HP 48SX GRAPHICS ZOOM menu).			
+	Toggles cursor type between dark and inverted.			
ATTN	Quits to the HP 48SX stack.			
ENTER	Copies the x- and y-coordinates of the cursor to the stack as a complex number. If in Trace mode, the exact equation value is used.			
	Copies a list of tagged real numbers to the stack—for func- tions: x and y; for polar plots: θ and r; and for parametric plots: t, x, and y. In Trace mode, the exact equation value is used.			

GRAPH	Toggles scrolling mode on and off. In scrolling mode, cur- sor keys scroll oversize graphs in the indicated direction.
	(Trace mode off) Move the cursor in the indicated direction. When prefixed with \overrightarrow{P} , move the cursor to the edge of the screen in the indicated direction, or to the edge of PICT if already at the edge of the screen.
	(Trace mode on) < and < decrease and increase the in- dependent variable, and < and < switch between equa- tions (see TRACE).
+	Toggles coordinate display on and off (see COORD).
—	Toggles menu on and off (see KEYS).
	Toggles Trace mode on and off (same as TRACE).
+/-	Toggles cursor type (same as +,).
FEVEW	Temporarily displays the PLOT2 status message, including the plot type, current equation(s), and independent variable.
STO	Copies PICT to the stack as a graphics object (GROB).
ON MTH	Dumps the current screen to an IR printer.

Zoom Operations

From the Sparcom 2D Graphics Environment menu, press **ZOOM** to access the Sparcom 2D Zoom menu.

The zoom operations in the Sparcom 2D Zoom menu manipulate the viewing window by zooming in on a region for more detail or by zooming out for more information. You can zoom along the x-axis, the y-axis, or both axes.

Sparcom 2D Zoom Menu Operations

Screen	Softkeys					
Zoom Menu	XAUTO	Х	Y	XY		EXIT

Key	Action
EXIT	Exits the Sparcom 2D Zoom menu back to the Sparcom 2D Graphics Environment menu.
Х	Prompts for x-axis zoom factor.

Jumping to Any Value of the Independent Variable

From the Sparcom 2D Graphics Environment menu, press **DUMP** to jump to any value of the independent variable. You will be prompted for a new value for the independent variable (X, θ , or T, depending on the plot type) and the cursor will be moved to the current equation at that value. If the current equation is undefined at that value, **DUMP** will do nothing. If that value is off-screen, the graph will be redrawn with the new cursor position at the center of the display.

Centering the Graph at the Cursor Coordinates

From the Sparcom 2D Graphics Environment menu, press **CEND** to redraw the graph with the cursor position at the center of the display. If Trace mode is on, the graph will be redrawn with the exact function value at the center of the display. If Trace mode is off, the graph will be redrawn with the pixel coordinates at the center of the display.

Displaying the Cursor Coordinates

From the Sparcom 2D Graphics Environment menu, press **CORD** or [+] to toggle coordinate display on and off. When on, the coordinates will be displayed in the menu area. The coordinates can be copied to the stack by pressing **ENTER** or **ENTER**.

Trace Mode Off

The coordinates displayed will be the x- and y-coordinates of the center of the pixel on which the cursor is located. The coordinate labels will always be X and Y, regardless of the names of the independent and dependent variables.

Pressing ENER will return a complex number representing the x- and y-coordinates of the center of the pixel on which the cursor is located. Pressing ENER will return the same coordinates as a list of two tagged real numbers.

Trace Mode On

The coordinates displayed will depend on the plot type:

FUNCTION: The coordinates displayed will be the x-value of the cursor and F(x), the function y-value for that x-value. The coordinate
labels will be X and Y, regardless of the names of the independent and dependent variables.

- **POLAR:** The coordinates displayed will be the θ -value of the cursor and R(θ), the function r-value for that θ -value. The coordinate labels will be θ and R, regardless of the names of the independent and dependent variables.
- PARAMETRIC: The coordinates displayed will be the t-value of the independent variable and F(t), the function x- and y-values for that t-value. The coordinate labels will be T, X, and Y, regardless of the names of the independent and dependent variables.

Pressing ENER will return a complex number representing the exact x- and y-coordinates of the cursor's location on the function. Pressing \square ENER will return a list of tagged real numbers—for functions: x and y; for polar plots: θ and r; and for parametric plots: t, x, and y.

<u>NOTE</u>: For a function plot, toggling Trace mode on and off may change the displayed y-coordinate. This is because Trace mode always displays the *exact function value*, which may not be identical to the y-value of the closest pixel.

Tracing an Equation

From the Sparcom 2D Graphics Environment menu, press **TRACE** or $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ to toggle Trace mode on and off. When on, the softkey will appear with a box.

In Trace mode, the cursor hugs the current equation, \triangleleft and \blacktriangleright decrease and increase the independent variable, and \triangleleft and \checkmark switch between equations if 'EQ' contains more than one equation. $\bowtie \triangleleft$ and $\bowtie \triangleright$ move the cursor to the minimum and maximum value of the independent variable.

<u>NOTE</u>: Tracing an undrawn interval of an equation will cause the equation to be filled in pixel by pixel, except in regions where the equation is undefined.

Function Analysis Operations

From the Sparcom 2D Graphics Environment menu, press **ECN** to access the Sparcom 2D Function Analysis menu.

The function analysis operations in the Sparcom 2D Function Analysis menu allow you to analyze the behavior and characteristics of the plotted equations. You can find roots, extremums, slopes, and derivatives. You can also switch among multiple plotted equations. All function analysis operations work correctly whether Trace mode is on or off.

The Sparcom 2D Function Analysis menu is summarized below. (For more information, because of the similarity to the HP 48SX GRAPHICS FCN menu, see Chapter 18 of the HP 48SX Owner's Manual, "Basic Plotting and Function Analysis.")

Sparcom 2D Function Analysis Menu Operations

Screen	Softkeys					
Function	ROOT	EXTR	SLOPE	F'	NXEQ	EXIT

Key	Action
EXIIT	Exits the Sparcom 2D Function Analysis menu back to the Sparcom 2D Graphics Environment menu.
EXTR	Moves the cursor to the nearest extremum or inflection point and displays the coordinates. The extremum is automati- cally copied to the stack.
	Calculates and plots first derivative of current equation. Prepends derivative to 'EQ', converting 'EQ' to a list if nec- essary. If in Trace mode, cursor switches to the derivative.
NXEQ	If 'EQ' is an equation, swaps the sides of the equation. If 'EQ' is a list, rotates the list, moving the second equation to the beginning and the first equation to the end.
ROOT	Moves the cursor to the nearest root and displays the coordinates. The root is automatically copied to the stack.
SLOPE	Calculates and displays the slope of the equation at the x- value of the cursor. If not in Trace mode, also moves the cursor to the point on the equation where the slope was cal- culated. The slope is automatically copied to the stack.

Tagging the Graph

From the Sparcom 2D Graphics Environment menu, press **TAG** to tag the graph at the current cursor location. The tag is a circular mark which can be used to circle points of interest on the graph. Unlike **MARK** in the HP 48SX Graphics Environment, **TAG** does *not* toggle the tag on and off: the tag is permanent.

The Contents of 'PPAR'

The HP 48SX Plot application and the Calculus Pac use the reserved variable 'PPAR' to store the plotting parameters for 2D plots. 'PPAR' should contain the following list of objects:

{ (x_{min}, y_{min}) (x_{max}, y_{max}) indep res axes ptype depend }

ltem	Description	Default
(x _{min} , y _{min})	A complex number containing the coordinates of the lower left corner of the display region.	(-6.5,-3.1)
(x _{max} , y _{max})	A complex number containing the coordinates of the upper right corner of the display region.	(6.5,3.1)
indep	Independent variable. Can be a name or a list containing a name and two real numbers (the x-axis plotting range).	'X'
res	Resolution along the x-axis. A binary integer specifies the num- ber of pixels, while a real number specifies the number of user units between points.	0
axes	A complex number containing the coordinates of the axes inter- section, or a list containing the intersection and axes labels.	(0,0)
ptype	Command name specifying the plot type. Only FUNCTION, POLAR, and PARAMETRIC are supported by the Sparcom 2D Graphics Environment.	FUNCTION
depend	Dependent variable. Can be a name or a list containing the name and two real numbers (the y-axis plotting range).	'Y'

'PPAR' Contents

Chapter 12 3D Plotting

3D plotting utilizes the Sparcom 3D Graphics Environment, which provides a powerful way to specify, plot, and trace 3D functions, parametric curves, and parametric surfaces, and the Sparcom PLOT3 menu, which provides a flexible way to specify the 3D plot parameters.

This chapter covers:

- Using 3D Plotting
- □ 3D Plotting Demonstrations
- More About 3D Plotting
- PLOT3: Sparcom PLOT3 Menu
- **GRF3: Sparcom 3D Graphics Environment**

The programmable commands in the Sparcom PLOT3 menu and submenus are described in both "PLOT3: Sparcom PLOT3 Menu" and the following sections:

- DRAW3: Draw Plot (3D)
- **ERASE: Erase PICT**
- EYE3: Eye Point (3D)
- FUNC3: Function Plot Type (3D)
- PCURV3: Parametric Curve Plot Type (3D)
- **PDIM: PICT Dimension**
- PSURF3: Parametric Surface Plot Type (3D)
- STEQ: Store in EQ
- STOX: Store x-Component in EQ
- STOY: Store y-Component in EQ
- STOZ: Store z-Component in EQ
- TDOM: t-Variable Domain
- TRES: t-Variable Resolution
- **TVAR: t-Variable Name**
- UDOM: u-Variable Domain
- **URES: u-Variable Resolution**
- UVAR: u-Variable Name
- **VBOX:** Draw Viewing Box
- VDOM: v-Variable Domain
- VRES: v-Variable Resolution
- VVAR: v-Variable Name

- □ XDOM: x-Variable Domain
- □ XRES: x-Variable Resolution
- □ XRNG3: x-Axis Display Range (3D)
- □ XVAR: x-Variable Name
- □ XYPRJ: Draw xy-Plane Projection
- DYDOM: y-Variable Domain
- □ YRES: y-Variable Resolution
- □ YRNG3: y-Axis Display Range (3D)
- □ YVAR: y-Variable Name
- □ ZRNG3: z-Axis Display Range (3D)

Using 3D Plotting

Both the Sparcom 3D Graphics Environment and PLOT3 menu are accessible from the Plotting Toolkit. To get to the Plotting Toolkit, follow these steps:

- Press 🔄 LIBRARY to display all libraries available to your HP 48SX.
- 2 Find and press **CALCU** to display the Calculus Pac Library menu.
- O Press the fourth softkey, **PLOT**, to display the Plotting Toolkit menu:

(HOME)
4:
2
1:
PLOT2 PLOT3 OFER GRF2 GRF3 PKEY

At this point, press **PLOT3** to display the Sparcom PLOT3 menu or press **GRF3** to enter the Sparcom 3D Graphics Environment.

3D Plotting Demonstrations

This section demonstrates the capabilities of the 3D plotting routines in the Calculus Pac for each of the supported plot types: 3D functions (FUNC3), parametric curves (PCURV3), and parametric surfaces (PSURF3).

This section covers:

- **3D** Function Demonstration
- □ 3D Parametric Curve Demonstration
- 3D Parametric Surface Demonstration

3D Function Demonstration

To execute the 3D function demonstration, follow these steps:

- **0** (If necessary) Press **G** LEARY **CALCU PLOT** to view Plotting Toolkit menu.
- **2** (If necessary) Press **PLOTS** to display the Sparcom PLOT3 menu.
- **3** (If necessary) Press **PTYPE** to display the Sparcom PLOT3 PTYPE menu.
- (If necessary) Press **EUNC** to set the plot type to FUNC3.
- **6** Press **DEMO** to plot the demonstration equation:

EQ: '(Y²-X²)/5' **PPAR3:** { [-5 -5 -5] [5 5 5] [20 -30 30] 'X' 'Y' # 8d # 8d FUNC3 }

The 3D plot parameters for this plot include a modified eye point location of [20 -30 30]. All other parameters have default values.

Press IN when you have finished examining the plot in the Sparcom 3D Graphics Environment. The Sparcom PLOT3 PTYPE menu will reappear.

3D Parametric Curve Demonstration

To execute the 3D parametric curve demonstration, follow these steps:

- **(If necessary)** Press **CALCU PLOT** to view Plotting Toolkit menu.
- 2 (If necessary) Press **PLOT3** to display the Sparcom PLOT3 menu.
- (If necessary) Press **PTYPE** to display the Sparcom PLOT3 PTYPE menu.
- (If necessary) Press **PCURV** to set the plot type to PCURV3.
- **6** Press **DEMO** to plot the demonstration equation:

EQ: { 'SIN(T)' 'COS(T)' '.2*T' } **PPAR3:** { [-1.5 -1.5] [1.5 1.5 1.5] [20 -20 20] { T -6.28318530718 6.28318530718 } 'Y' # 30d # 8d PCURV3 }

The 3D plot parameters for this plot include x-, y-, and z-axis display ranges of -1.5 to 1.5, a t-variable domain of -2π to $+2\pi$ to control values of the parametric variable, and a t-variable resolution of # 30d to plot the helix in finer detail. All other parameters have default values.

(b) Press **(ATN)** when you have finished examining the plot in the Sparcom 3D Graphics Environment. The Sparcom PLOT3 PTYPE menu will reappear.

3D Parametric Surface Demonstration

To execute the 3D parametric surface demonstration, follow these steps:

- (If necessary) Press (CALCU PLOT to display the Plotting Toolkit menu.
- 2 (If necessary) Press **PLOTS** to display the Sparcom PLOT3 menu.
- (If necessary) Press **PTYPE** to display the Sparcom PLOT3 PTYPE menu.
- (If necessary) Press **ESURE** to set the plot type to PSURF3.
- **6** Press **DEMO** to plot the demonstration equation:

EQ: { 'SIN(U)' 'COS(U)' 'V' } PPAR3: { [-1.5 -1.5 -1.5] [1.5 1.5 1.5] [0 -50 125] { U 0 360 } 'V' # 12d # 3d PSURF3 }

The 3D plot parameters for this plot include x-, y-, and z-axis display ranges of -1.5 to 1.5, an eye point of [0-50 125], a u-variable domain of 0 to 360 (degrees) to control the rotation of the u-variable around the z-axis, a u-variable resolution of # 12d, and a v-variable resolution of # 3d. All other parameters have default values.

Press ATN when you have finished examining the plot in the Sparcom 3D Graphics Environment. The Sparcom PLOT3 PTYPE menu will reappear.

More About 3D Plotting

3D functions, parametric curves, and parametric surfaces are plotted in an oblique single-point perspective view with the vanishing point located along the y-axis. A fast divide-by-depth method is used to calculate the perspective, avoiding the time-consuming matrix transformations normally required for 3D plotting. The resolution of a 3D graph can be finely controlled, either as an absolute number of grid squares or line segments, or as a user unit spacing.

This section covers:

- □ Contents of 'EQ'
- Divide-by-Depth, Display Volume, and Eye Point
- □ Variable Domains vs. Display Ranges
- Controlling the Resolution
- Hidden Line Removal
- Overlaying Multiple 3D Graphs

Contents of 'EQ'

The Calculus Pac plots the equation stored in the reserved variable 'EQ'. For 3D functions, 'EQ' should contain a single expression, equation, or program, while for 3D parametric curves and surfaces, 'EQ' should contain a list of three expressions, equations, or programs, one each to represent the x-, y-, and z-components. A valid equation (or component) can be any of the following:

- **Expression:** A symbolic such as 12, $'X^2+5'$, or 'SIN(X)*SIN(Y)'.
- □ Equation: Two expressions separated by =, such as 'Z=12', 'Z=X^2+5', or 'Z=SIN(X)*SIN(Y)'. The left side is *always* ignored, regardless of the setting of flag -30 (Function Plotting).
- Program: A program that takes no values from the stack and returns exactly one value to the stack, such as « IF 'X<0' THEN '2*X' ELSE '2*Y' END ». The program should use the variables names specified by XVAR, YVAR, TVAR, UVAR, and/or VVAR.
- Global Name: A global name containing any of the above objects.

Throughout this chapter, the term *equation* refers to one of the above objects (for 3D functions) or to a list of three of the above objects (for 3D parametric curves and surfaces).

Divide-by-Depth, Display Volume, and Eye Point

All 3D graphs are plotted in a parallelepiped display volume, specified by xaxis, y-axis, and z-axis minimum and maximum values. The display volume is projected onto PICT (the viewing plane) with the eye point as the center of projection and a single vanishing point along the y-axis. The viewing plane is assumed to be one unit from the eye point and is always parallel to the xz-plane.

<u>NOTE</u>: This method prevents the eye point from being located such that $y_{min} \le y_{eye} \le y_{max}$, but this inability to "look" directly along the x-axis toward the graph can be circumvented by increasing the value of x_{eye} or z_{eye} sufficiently.

The default display volume is a 10 x 10 x 10 cube centered on the origin, and the default eye point is located at [20-2020]. Locating the eye point closer to the graph will increase the perspective distortion (causing lines parallel to the yaxis to noticeably converge to the vanishing point), while locating the eye point farther from the graph will decrease the perspective distortion. Increasing or decreasing x_{eye} or y_{eye} sufficiently will effectively rotate the graph about the zaxis, despite the restriction on the location of the eye point. (For more information, see "EYE3: Eye Point (3D).")

Variable Domains vs. Display Ranges

The display ranges control the dimensions of the display volume, which is always entirely contained in PICT (the viewing plane). The variable domains (which default to the display ranges) control the actual extent of the graph plotted inside the viewing volume. Therefore, while the viewing volume for a 3D function graph might be a 10 x 10 x 10 cube, the graph could be restricted to the inner 5 x 5 vertical column by specifying separate variable domains for x and y. (For more information, see "XDOM: x-Variable Domain," "YDOM: y-Variable Domain," and other related sections.)

Controlling the Resolution

The resolution along both axes of a 3D graph can be specified independently as either binary integers or real numbers. Depending on the plot type, a binary integer specifies the number of grid squares, parametric curve segments, or values of one of the parametric variables for a parametric surface, while a real number specifies the number of user units between grid lines, parametric curve points, or values of one of the parametric variables for a parametric surface. (For more information, see "XRES: x-Variable Resolution," "YRES: y-Variable Resolution," and other related sections.) <u>NOTE</u>: For fastest results, plot with a coarse resolution and experiment to find the best eye point location. When you are satisfied with the view, increase the resolution for finer detail.

Hidden Line Removal

Hidden line removal is an optional setting for 3D functions and is controlled by the state of user flag 58. (Flag 58 clear means hidden line removal is active, while Flag 58 set means it is not.) By default, hidden line removal is active. To toggle hidden line removal, press **HEINE** at the Sparcom PLOT3 menu. (For more information, see "PLOT3: Sparcom PLOT3 Menu.")

<u>WARNING</u>: Hidden line removal applies *only* to 3D functions and not to 3D parametric curves or 3D parametric surfaces. Also, because the algorithm used to perform hidden line removal depends on the contents of PICT, before drawing a 3D function with hidden line removal, you *must* erase PICT. If you do not, the graph may be drawn incorrectly.

Overlaying Multiple 3D Graphs

Although the Sparcom PLOT2 menu and 2D Graphics Environment support multiple equations, the Sparcom PLOT3 menu and 3D Graphics Environment do not. The only way to overlay multiple 3D graphs is to store and draw one equation and then store and draw another equation, without erasing PICT between drawing operations. However, you should be aware of the following:

- Only the equation currently stored in 'EQ' will be traced inside the Sparcom 3D Graphics Environment—any previously drawn equation(s) will no longer be available for tracing.
- Hidden line removal will *not* work correctly for all 3D functions graphed subsequent to the first one, because a non-empty PICT will mislead the algorithm. Therefore, all 3D functions graphed subsequently to the first one should be drawn with hidden line removal turned off.*

^{*} There *is* a way to display multiple 3D function graphs with hidden line removal, but it requires that you erase PICT, draw the first graph, store the first graph as a graphics object, erase PICT, draw another graph, store that graph as a graphics object, merge the two graphics objects with the command GOR, and store the resulting graphics object into PICT for display. For more information, see Chapter 19 of the HP 48SX Owner's Manual, "More About Plotting and Graphics Objects."

PLOT3: Sparcom PLOT3 Menu

The Sparcom PLOT3 menu and submenus provide a flexible way to specify the 3D plot parameters.

This section covers:

- Using the Sparcom PLOT3 Menu
- □ The Sparcom PLOT3 PTYPE Menu
- The Sparcom PLOT3 EQN Menu
- □ The Sparcom PLOT3 RNG Menu
- The Sparcom PLOT3 VAR Menu

Using the Sparcom PLOT3 Menu

There are two ways to access the Sparcom PLOT3 menu:

- Press Profit to display the enhanced Plot menu and press Profit to display the Sparcom PLOT3 menu. (The Sparcom Plotting Keys must be installed and User mode must be turned on. For more information, see "PKEY: Sparcom Plotting Keys" in Chapter 10.)
- Press (GALCU PLOT PLOT3) to display the Sparcom PLOT3 menu.

There is one way to access the Sparcom PLOT3 menu from the interactive menus:

Press General GaleCU GaleCU to access the Main menu, move the pointer to "Plotting: 3D w/ Trace," press ENER to display the information screen about 3D plotting, and press ATTN to display the Sparcom PLOT3 menu. (This will automatically install the Sparcom Plotting Keys and turn on User mode. For more information, see "PKEY: Sparcom Plotting Keys" in Chapter 10.)

When the Sparcom PLOT3 menu is displayed, a status message will appear, describing the plot type, current equation, and information about the various PLOT3 submenus (display assumes default plot type and that 'EQ' does not exist):

The Sparcom PLOT3 menu is summarized below.

Sparcom PLOT3 Menu Operations

Screen	Softkeys					
Sparcom	ERASE	DRAW3	PTYPE	EQN	RNG	VAR
PLOT3 Menu	VBOX	XYPRJ	HLINE	PDIM	RESET	

Key	Description
DRAW	Plots the equation in the reserved variable 'EQ' in PICT (without erasing PICT), using the x-, y-, and z-axis display ranges. Automatically enters the Sparcom 3D Graphics Environment if executed from the Sparcom PLOT3 menu. G DEFAUS executes STEQ. DEFAUS recalls the current equation.
ERASE	Erases PICT, leaving a blank PICT of the same size.
EQN	Displays the Sparcom PLOT3 EQN menu.
HLINE	Toggles hidden line removal for 3D functions. A box appears in the key label to indicate when hidden line removal is active.
PDIM	Changes the size of PICT. PDIM recalls the size of PICT.
PTYPE	Displays the Sparcom PLOT3 PTYPE menu.
RESET	Resets all plot parameters except the plot type, to their de- fault values and erases PICT, restoring it to 131 x 64.
RNG.	Displays the Sparcom PLOT3 RNG menu.
VAR	Displays the Sparcom PLOT3 VAR menu.
VBOX	Draws the viewing box in PICT, using the x-, y-, and z-axis display ranges.
XYPRJ	Draws the xy-plane projection in PICT, using the x- and y- axis display ranges.
FEVEW	Redisplays the status message.

The Sparcom PLOT3 PTYPE Menu

Press **PTYPE** to display the Sparcom PLOT3 PTYPE menu. A status message will appear, describing the available plot types (display assumes default plot type):

Plot typ Select p	pe: FUNC3 plot type
FUNC3 : PCURV3: PSURF3:	functions space curves parametric surfaces
FUNC POURY	PSURF DEMO EXIT

The Sparcom PLOT3 PTYPE menu is summarized below.

Sparcom PLOT3 PTYPE Menu Operations

Screen	Softkeys					
PTYPE Menu	FUNC	PCURV	PSURF		DEMO	EXIT

Key	Description
DEMO	Executes the demo for the current plot type.
EXIT	Exits to the Sparcom PLOT3 menu.
FUNC	Sets plot type to FUNC3 and resets variables to 'X' and 'Y'.
PCURV	Sets plot type to PCURV3 and resets first variable to T'.
PSURF	Sets plot type to PSURF3 and resets variables to 'U' and 'V'.
FEVEW	Redisplays the status message.

The Sparcom PLOT3 EQN Menu

Press **EQN** to display the Sparcom PLOT3 EQN menu. A status message will appear (depending on the plot type), describing the current equation (displays assume 'EQ' does not exist):

Plot type PS	URF3
Set equation:	
X(U,V): Y(U,V) Z(U,V)	
[Blue]-STOXYZ STOR STOY STOR	recalls…

The Sparcom PLOT3 EQN menu is summarized below.

Sparcom PLOT3 EQN Menu Operations

Screen	Softkeys				
EQN Menu (FUNC3)	STEQ				
EQN Menu (PCURV3, PSURF3)	STOX	STOY	STOZ		

Key	Description
EXIT	Exits to the Sparcom PLOT3 menu.
STEQ	Stores an equation from the stack into 'EQ'. P STEQ re- calls the current equation.
STOX	Stores an equation from the stack as the x-component of the equation in 'EQ' (as the first item in a list of three items).
STOY	Stores an equation from the stack as the y-component of the equation in 'EQ' (as the second item in a list of three items).
STOZ	Stores an equation from the stack as the z-component of the equation in 'EQ' (as the third item in a list of three items).
FEVEW	Redisplays the status message.

The Sparcom PLOT3 RNG Menu

Press **ERNG** to display the Sparcom PLOT3 RNG menu. A status message will appear, describing the current display ranges and eye point (display assumes default values):

The Sparcom PLOT3 RNG menu is summarized below.

Sparcom PLOT3 RNG Menu Operations

Screen	Softkeys					
RNG Menu	XRNG	YRNG	ZRNG	EYE3	RESET	EXIT

Key	Description
EXIT	Exits to the Sparcom PLOT3 menu.
eye3	Sets the eye point in 'PPAR3' as the vector [$x_{eye} y_{eye} z_{eye}$].
resen	Resets x-, y-, and z-axis display ranges and the eye point to their default values.
XRNG	Sets the x-axis display range in 'PPAR3' as part of the vectors [$x_{min} y_{min} z_{min}$] and [$x_{max} y_{max} z_{max}$]. \longrightarrow XENCES recalls the current x-axis display range.
YRNG	Sets the y-axis display range in 'PPAR3' as part of the vectors [$x_{min} y_{min} z_{min}$] and [$x_{max} y_{max} z_{max}$]. \square YENCES recalls the current y-axis display range.
ZRNG	Sets the z-axis display range in 'PPAR3' as part of the vectors [$x_{min} y_{min} z_{min}$] and [$x_{max} y_{max} z_{max}$]. \blacktriangleright ZENGS recalls the current z-axis display range.
FEVEW	Redisplays the status message.

The Sparcom PLOT3 VAR Menu

Press **VAR** to display the Sparcom PLOT3 VAR menu. A status message will appear (depending on the plot type), describing the current domains, resolutions, and variables (displays assume default values):

The Sparcom PLOT3 VAR menu is summarized below.

Sparcom PLOT3 VAR Menu Operations

Screen			Soft	keys		
VAR Menu (FUNC3)	XDOM XVAR	YDOM YVAR	XRES	YRES	RESET	EXIT EXIT
VAR Menu (PCURV3)	TDOM	TRES	TVAR		RESET	EXIT
VAR Menu (PSURF3)	UDOM UVAR	VDOM VVAR	URES	VRES	RESET	EXIT EXIT

Key	Description
EXIT	Exits to the Sparcom PLOT3 menu.
reset	Resets domains, resolutions, and variables to their default values.
TDOM	Sets t-variable domain in 'PPAR3' as the list { $t_{var}t_{min}$ t_{max} }. \square IDOM recalls the current t-variable domain.
TRES	Sets t-variable resolution in 'PPAR3' as the binary integer or real number t_{res} .

TVAR	Sets t-variable name in 'PPAR3' as the name t _{var} .
UDOM	Sets u-variable domain in 'PPAR3' as the list { $u_{var} u_{min} u_{max}$ }.
ures	Sets u-variable resolution in 'PPAR3' as the binary integer or real number u_{res} .
UVAR	Sets u-variable name in 'PPAR3' as the name u _{var}
VDOM	Sets v-variable domain in 'PPAR3' as the list { $v_{var}v_{min}$ v_{max} }. \blacktriangleright VDOM recalls the current v-variable domain.
VRES	Sets v-variable resolution in 'PPAR3' as the binary integer or real number v_{res} .
VVAR	Sets v-variable name in 'PPAR3' as the name v_{var} VVAR recalls the current v-variable name.
XDOM	Sets x-variable domain in 'PPAR3' as the list { $x_{var} x_{min} x_{max}$ }. \overrightarrow{PP} XDOM recalls the current x-variable domain.
XRES	Sets x-variable resolution in 'PPAR3' as the binary integer or real number x_{res} .
XVAR	Sets x-variable name in 'PPAR3' as the name x_{var} EVAR recalls the current x-variable name.
YDÓM	Sets y-variable domain in 'PPAR3' as the list { $y_{var} y_{min} y_{max}$ }. \overrightarrow{P} MDOM recalls the current y-variable domain.
YRES	Sets y-variable resolution in 'PPAR3' as the binary integer or real number y_{res} .
YVAR	Sets y-variable name in 'PPAR3' as the name y _{var}
FEVEW	Redisplays the status message.

GRF3: Sparcom 3D Graphics Environment

This command invokes the Sparcom 3D Graphics Environment, which provides a powerful way to specify, plot, and trace 3D functions, parametric curves, and parametric surfaces.

This section covers:

- Using the Sparcom 3D Graphics Environment
- □ Tracing an Equation
- Drawing the Viewing Box
- Drawing the xy-Plane Projection
- Displaying the Cursor Coordinates
- □ The Contents of 'PPAR3'

Using the Sparcom 3D Graphics Environment

There are three ways to access the Sparcom 3D Graphics Environment:

- Plot an equation from the Sparcom PLOT3 menu with DRAW.
- □ Press row from the stack. (The Sparcom Plotting Keys must be installed and User mode must be turned on. For more information, see "PKEY: Sparcom Plotting Keys" in Chapter 10.)
- Press 🛏 LIBRARY CALCU PLOT GRE3.

The Sparcom 3D Graphics Environment is summarized below.

Sparcolli SD Graphics Environment Operatio	Sparcom	3D Graphics	Environment	Operations
--	---------	-------------	-------------	------------

Screen	Softkeys					
Sparcom 3D Graphics Env.	VBOX	XYPRJ	COORD	KEYS		

Key	Action
Goord	Turns on coordinate display in the menu area. Press $+$ or any softkey to restore the menu. The coordinates can be copied to the stack by pressing ENER or $-$ ENER.
KEYS	Turns off menu to show more of the graph. Press — or any softkey to restore the menu.

VBOX	Draws the viewing box, using the x-, y-, and z-axis display ranges.
XYPRJ	Draws the xy-plane projection, using the x- and y-axis dis- play ranges.
	Decreases the first variable $(x, t, or u)$. When prefixed with \square , decreases to the minimum value.
	Increases the first variable $(x, t, or u, depending on the plot type)$. When prefixed with \square , increases to the maximum value.
	Increases the second variable (y or v, depending on the plot type). When prefixed with \square , increases to the maximum value.
	Decreases the second variable (y or v, depending on the plot type). When prefixed with \square , decreases to the minimum value.
ATTN	Quits to the HP 48SX stack.
ENTER	Copies the x-, y-, and z-coordinates of the cursor to the stack as a 3D vector, using the exact equation value for the z-co- ordinate.
	Copies a list of tagged real numbers to the stack—for 3D functions: x, y, and z; for 3D parametric curves: t, x, y, and z; and for 3D parametric surfaces: u, v, x, y, and z.
+	Toggles coordinate display in the menu area on and off. The coordinates can be copied to the stack by pressing ENER or ENER .
STO	Copies PICT to the stack as a graphics object (GROB).
ON MIH	Dumps the current screen to an IR printer.

Tracing an Equation

The Sparcom 3D Graphics Environment automatically traces the plotted equation. The cursor keys move between the plotted points of the graph, which may be the intersections of the grid lines (3D functions and parametric surfaces) or the ends of the line segments (3D parametric curves). \blacksquare and \blacktriangleright decrease and increase the first variable, while \blacktriangle and \checkmark decrease and increase the second variable (except for 3D parametric curves). In all cases, prefixing a cursor key with \blacksquare increases or decreases the variable as far as possible in the indicated direction.

Drawing the Viewing Box

From the Sparcom 3D Graphics Environment menu, press **VEOX** to draw the viewing box, using the x-, y-, and z-axis display ranges.

Drawing the xy-Plane Projection

From the Sparcom 3D Graphics Environment menu, press **XYERJ** to draw the xy-plane projection, using the x- and y-axis display ranges.

Displaying the Cursor Coordinates

From the Sparcom 3D Graphics Environment menu, press **CORD** or + to toggle coordinate display on and off. When on, the coordinates will be displayed in the menu area. The coordinates can be copied to the stack by pressing **ENTER** or **ENTER**.

When coordinate display is on, pressing [NX] will toggle between the x-, y-, and z-coordinates and either the t-coordinate for 3D parametric curves or the u- and v-coordinates for 3D parametric surfaces. For 3D functions, [NX] is non-functional.

Pressing ENER will return a 3D vector representing the exact x-, y-, and z-coordinates of the cursor's location on the function. Pressing ENER will return a list of tagged real numbers—for 3D functions: x, y, and z; for 3D parametric curves: t, x, y, and z; and for 3D parametric surfaces: u, v, x, y, and z.

The Contents of 'PPAR3'

The Calculus Pac uses the global variable 'PPAR3' to store the plotting parameters for 3D plots. 'PPAR3' should contain the following list of objects:

{ [x_{min} y_{min} z_{min}] [x_{max} y_{max} z_{max}] [x_{eye} y_{eye} z_{eye}] var1 var2 res1 res2 ptype }

Item	Description	Default
[x _{min} y _{min} z _{min}]	A vector containing the coordi- nates of one corner of the display volume.	[-5 -5 -5]
[x _{max} y _{max} z _{max}]	A vector containing the coordi- nates of the opposite corner of the display volume.	[555]

'PPAR3' Contents

[x _{eye} y _{eye} z _{eye}]	A vector containing the coordinates of the eye point.	[20 - 20 20]
var1	First variable. Can be a name or a list containing a name and two real numbers to specify a domain.	'X' for FUNC3 'T' for PCURV3 'U' for PSURF3
var2	Second variable. Can be a name or a list containing a name and two real numbers to specify a domain.	'Y' for FUNC3 'V' for PSURF3
res l	First resolution. A real number indicates user unit resolution, while a binary integer indicates total divisions.	# 8d
res2	Second resolution. A real num- ber indicates user unit resolution, while a binary integer indicates total divisions.	# 8d
ptype	Command name specifying the plot type. Only FUNC3, PCURV3, and PSURF3 are sup- ported by the Sparcom 3D Graphics Environment.	FUNC3

DRAW3: Draw Plot (3D)

This command plots the equation in the reserved variable 'EQ' in PICT, using the x-, y-, and z-axis display ranges specified by XRNG3, YRNG3, and ZRNG3 and (if specified) the variable domains specified by XDOM, YDOM, TDOM, UDOM, or VDOM. When executed from the Sparcom PLOT3 menu, DRAW3 plots the equation and then enters the Sparcom 3D Graphics Environment. When executed from a program, DRAW3 plots the equation, but does *not* enter the Sparcom 3D Graphics Environment. DRAW3 does not erase PICT—to do that, execute ERASE.

DRAW3 is located in the Sparcom PLOT3 Menu.

Entry Method(s)

Input	Output
1:	1:

ERASE: Erase PICT

This command erases PICT, leaving a blank PICT of the same dimensions.

ERASE is located in the Sparcom PLOT3 Menu.

Entry Method(s)

Input	Output
1:	1:

Note(s)

This is a built-in HP 48SX command.

EYE3: Eye Point (3D)

This command specifies the eye point for the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as the vector [$x_{eye} y_{eye} z_{eye}$]. The default eye point location is [20–2020]. (For more information, see "More About 3D Plotting.")

EYE3 is located in the Sparcom PLOT3 RNG Menu.

Entry Method(s)

Input	Output
3: x _{eye}	3:
2: y _{eye}	2:
1: z _{eye}	1:

Input	Output
50 – 50 50 Eye	

FUNC3: Function Plot Type (3D)

This command sets the plot type to FUNC3 for the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3'. This is the default plot type. (For more information, see "More About 3D Plotting.")

FUNC3 is located in the Sparcom PLOT3 PTYPE menu.

Entry Method(s)

Input	Output
1:	1:

PCURV3: Parametric Curve Plot Type (3D)

This command sets the plot type to PCURV3 for the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3'. FUNC3 is the default plot type. (For more information, see "More About 3D Plotting.")

PCURV3 is located in the Sparcom PLOT3 PTYPE menu.

Entry Method(s)

Input	Output
1:	1:

PDIM: PICT Dimension

This command replaces PICT with a blank PICT of the specified dimensions. PICT cannot be smaller than 131 pixels wide by 64 pixels high, nor larger than 2048 pixels wide.

PDIM is located in the Sparcom PLOT3 menu.

Entry Method(s)

Input	Output
2: width (binary integer)	2:
1: height (binary integer)	1:

Example(s)

Input	Output
# 262d # 128d PDIM	

Note(s)

This is a built-in HP 48SX command.

PSURF3: Parametric Surface Plot Type (3D)

This command sets the plot type to PSURF3 for the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3'. FUNC3 is the default plot type. (For more information, see "More About 3D Plotting.")

PSURF3 is located in the Sparcom PLOT3 PTYPE menu.

Entry Method(s)

Input	Output
1:	1:

STEQ: Store in EQ

This command stores an equation from the stack into the reserved variable 'EQ' in the current directory. (For more information, see "More About 3D Plotting.")

STEQ is located in the Sparcom PLOT3 EQN menu (if the plot type is FUNC3) and the enhanced Plot menu.

Entry Method(s)

Input	Output
1: expression, equation, or program	1:

Example(s)

Input	Output
'SIN(X)' STEO	
'Y=SIN(X)' STEO	
« X SIN » Steo	

Note(s)

This is a built-in HP 48SX command.

STOX: Store x-Component in EQ

This command stores an equation from the stack as the x-component of the equation in 'EQ' (as the first item in a list of three items) for 3D parametric curves or surfaces. If 'EQ' does not exist or is not a list of three items, it is overwritten and the y- and z-components are automatically initialized to 0. (For more information, see "More About 3D Plotting.")

STOX is located in the Sparcom PLOT3 EQN menu (if the plot type is PCURV3 or PSURF3).

Input	Output
1: expression, equation, or program	1:

Entry Method(s)

Input	Output
'SIN(T)' Stox	
'X=SIN(T)' STOX	
«TSIN» STOZ	

STOY: Store y-Component in EQ

This command stores an equation from the stack as the y-component of the equation in 'EQ' (as the second item in a list of three items) for 3D parametric curves and surfaces. If 'EQ' does not exist or is not a list of three items, it is overwritten and the x- and z-components are automatically initialized to 0. (For more information, see "More About 3D Plotting.")

STOY is located in the Sparcom PLOT3 EQN menu (if the plot type is PCURV3 or PSURF3).

Entry Method(S)
---------------	----

Input	Output
1: expression, equation, or program	1:

Input	Output
'COS(T)' STOY	
'Y=COS(T)' STOY	
« T COS » STOY	

STOZ: Store z-Component in EQ

This command stores an equation from the stack as the z-component of the equation in 'EQ' (as the third item in a list of three items) for 3D parametric curves and surfaces. If 'EQ' does not exist or is not a list of three items, it is overwritten and the x- and y-components are automatically initialized to 0. (For more information, see "More About 3D Plotting.")

STOZ is located in the Sparcom PLOT3 EQN menu (if the plot type is PCURV3 or PSURF3).

Input	Output
1: expression, equation, or program	1:

Entry Method(s)

Input	Output
'.2*T' Stoz	
'Z=.2*T' STOZ	
«.2 T * » Stoz	

TDOM: t-Variable Domain

This command specifies the t-variable domain for 3D parametric curves in the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as t_{min} and t_{max} in the list { $t_{var}t_{min} t_{max}$ }, which replaces the name t_{var} in 'PPAR3' if a t-variable domain is specified. The default t-variable domain is unspecified and defaults to the x-axis display range, -5 to 5. (For more information, see "More About 3D Plotting.")

TDOM is located in the Sparcom PLOT3 VAR menu (if the plot type is PCURV3.)

Input	Output
2: t _{min}	2:
1: t _{max}	1:

Entry Method(s)

Input	Output
-6.2831 6.2831 TOOM	

TRES: t-Variable Resolution

This command specifies the resolution of the t-variable for 3D parametric curves in the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as a binary integer or real number. A binary integer specifies the number of parametric curve segments, while a real number specifies the number of user units between plotted values of the t-variable. The default resolution is # 8d, which represents an 8-segment parametric curve. (For more information, see "More About 3D Plotting.")

TRES is located in the Sparcom PLOT3 VAR menu (if the plot type is PCURV3).

Input	Output
1: t _{res} (binary integer, real number)	1:

Entry Method(s)

Input	Output
# 15d TRES	
.1 TRES	

TVAR: t-Variable Name

This command specifies the name of the t-variable for 3D parametric curves in the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as a name. The default t-variable is 'T'. (For more information, see "More About 3D Plotting.")

TVAR is located in the Sparcom PLOT3 VAR menu (if the plot type is PCURV3).

Entry Method(s)

Input	Output
1: t _{var} (name)	1:

Input	Output
't' TVAR	
UDOM: u-Variable Domain

This command specifies the u-variable domain for 3D parametric surfaces in the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as u_{min} and u_{max} in the list { $u_{var} u_{min} u_{max}$ }, which replaces the name u_{var} in 'PPAR3' if a u-variable domain is specified. The default u-variable domain is unspecified and defaults to the x-axis display range, -5 to 5. (For more information, see "More About 3D Plotting.")

UDOM is located in the Sparcom PLOT3 VAR menu (if the plot type is PSURF3.)

Input	Output
2: u _{min}	2:
1: u _{max}	1:

Entry Method(s)

Input	Output
0 360 UDOM	

URES: u-Variable Resolution

This command specifies the resolution of the u-variable for 3D parametric surfaces in the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as a binary integer or real number. A binary integer specifies the number of steps of the u-variable, while a real number specifies the number of user units between plotted values of the u-variable. The default resolution is # 8d, which represents a parametric surface with 8 steps of the u-variable. (For more information, see "More About 3D Plotting.")

URES is located in the Sparcom PLOT3 VAR menu (if the plot type is PSURF3).

Input	Output
1: u _{res} (binary integer, real number)	1:

Entry Method(s)

Input	Output
# 15d URES	
.1 URES	

UVAR: u-Variable Name

This command specifies the name of the u-variable for 3D parametric surfaces in the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as a name. The default u-variable is 'U'. (For more information, see "More About 3D Plotting.")

UVAR is located in the Sparcom PLOT3 VAR menu (if the plot type is PSURF3).

Entry Method(s)

Input	Output
1: u _{var} (name)	1:

Input	Output
'u' UVAR	

VBOX: Draw Viewing Box

This command draws the viewing box in PICT, using the x-, y-, and z-axis display ranges specified by XRNG3, YRNG3, and ZRNG3.

VBOX is located in the Sparcom PLOT3 and 3D Graphics Environment menus.

Entry Method(s)

Input	Output
1:	1:

VDOM: v-Variable Domain

This command specifies the v-variable domain for 3D parametric surfaces in the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as v_{min} and v_{max} in the list { $v_{var}v_{min}v_{max}$ }, which replaces the name v_{var} in 'PPAR3' if a v-variable domain is specified. The default v-variable domain is unspecified and defaults to the y-axis display range, -5 to 5. (For more information, see "More About 3D Plotting.")

VDOM is located in the Sparcom PLOT3 VAR menu (if the plot type is PSURF3.)

Input	Output
2: v _{min}	2:
1: v _{max}	1:

Entry Method(s)

Input	Output
-1.5 1.5 VDOM	

VRES: v-Variable Resolution

This command specifies the resolution of the v-variable for 3D parametric surfaces in the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as a binary integer or real number. A binary integer specifies the number of steps of the v-variable, while a real number specifies the number of user units between plotted values of the v-variable. The default resolution is # 8d, which represents a parametric surface with 8 steps of the v-variable. (For more information, see "More About 3D Plotting.")

VRES is located in the Sparcom PLOT3 VAR menu (if the plot type is PSURF3).

Entry Method(s)

Input	Output
1: v _{res} (binary integer, real number)	1:

Input	Output
# 15d VRES	
.1 WRES	

VVAR: v-Variable Name

This command specifies the name of the v-variable for 3D parametric surfaces in the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as a name. The default v-variable is 'V'. (For more information, see "More About 3D Plotting.")

VVAR is located in the Sparcom PLOT3 VAR menu (if the plot type is PSURF3).

Entry Method(s)

Input	Output
1: v _{var} (name)	1:

Input	Output
'v' VVAR	

XDOM: x-Variable Domain

This command specifies the x-variable domain for 3D functions in the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as x_{min} and x_{max} in the list { $x_{var} x_{min} x_{max}$ }, which replaces the name x_{var} in 'PPAR3' if a x-variable domain is specified. The default x-variable domain is unspecified and defaults to the x-axis display range, -5 to 5. (For more information, see "More About 3D Plotting.")

XDOM is located in the Sparcom PLOT3 VAR menu (if the plot type is FUNC3.)

Input	Output
2: x _{min}	2:
1: x _{max}	1:

Entry Method(s)

Input	Output
-3 3 XDOM	

XRES: x-Variable Resolution

This command specifies the resolution of the x-variable for 3D functions in the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as a binary integer or real number. A binary integer specifies the number of grid lines along the x-axis, while a real number specifies the number of user units between grid lines along the x-axis. The default resolution is # 8d, which represents a function with 8 grid lines along the x-axis. (For more information, see "More About 3D Plotting.")

XRES is located in the Sparcom PLOT3 VAR menu (if the plot type is FUNC3).

Entry Method(s)

Input	Output
1: x _{res} (binary integer, real number)	1:

Input	Output
# 15d XRES	
.1 KRES	

XRNG3: x-Axis Display Range (3D)

This command specifies the x-axis display range for the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as x_{min} and x_{max} in the vectors [$x_{min} y_{min} z_{min}$] and [$x_{max} y_{max} z_{max}$]. These two vectors specify the coordinates of two opposite corners of the display volume. The default x-axis display range is -5 to 5. (For more information, see "More About 3D Plotting.")

XRNG3 is located in the Sparcom PLOT3 RNG menu.

Entry Method(s)

Input	Output
2: x _{min}	2:
1: x _{max}	1:

Input	Output
-55 KRNC	

XVAR: x-Variable Name

This command specifies the name of the x-variable for 3D functions in the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as a name. The default x-variable is 'X'. (For more information, see "More About 3D Plotting.")

XVAR is located in the Sparcom PLOT3 VAR menu (if the plot type is FUNC3).

Entry Method(s)

Input	Output
1: x _{var} (name)	1:

Input	Output
'x' XVAR	

XYPRJ: Draw xy-Plane Projection

This command draws the xy-plane projection in PICT, using the x-, y-, and zaxis display ranges specified by XRNG3, YRNG3, and ZRNG3.

XYPRJ is located in the Sparcom PLOT3 and 3D Graphics Environment menus.

Entry Method(s)

Input	Output
1:	1:

YDOM: y-Variable Domain

This command specifies the y-variable domain for 3D functions in the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as y_{min} and y_{max} in the list { $y_{var} y_{min} y_{max}$ }, which replaces the name y_{var} in 'PPAR3' if a y-variable domain is specified. The default y-variable domain is unspecified and defaults to the y-axis display range, -5 to 5. (For more information, see "More About 3D Plotting.")

YDOM is located in the Sparcom PLOT3 VAR menu (if the plot type is FUNC3.)

Input	Output
2: y _{min}	2:
1: y _{max}	1:

Entry Method(s)

Input	Output
-3 3 YDOM	

YRES: y-Variable Resolution

This command specifies the resolution of the y-variable for 3D functions in the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as a binary integer or real number. A binary integer specifies the number of grid lines along the y-axis, while a real number specifies the number of user units between grid lines along the y-axis. The default resolution is # 8d, which represents a function with 8 grid lines along the y-axis. (For more information, see "More About 3D Plotting.")

YRES is located in the Sparcom PLOT3 VAR menu (if the plot type is FUNC3).

Input	Output				
1: y _{res} (binary integer, real number)	1:				

Entry Method(s)

Input	Output
# 15d YRES	
.1 WRES	

YRNG3: y-Axis Display Range (3D)

This command specifies the y-axis display range for the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as y_{min} and y_{max} in the vectors [$x_{min} y_{min} z_{min}$] and [$x_{max} y_{max} z_{max}$]. These two vectors specify the coordinates of two opposite corners of the display volume. The default y-axis display range is -5 to 5. (For more information, see "More About 3D Plotting.")

YRNG3 is located in the Sparcom PLOT3 RNG menu.

Entry Method(s)

Input	Output			
2: y _{min}	2:			
1: y _{max}	1:			

Input	Output			
-55 YRING				

YVAR: y-Variable Name

This command specifies the name of the y-variable for 3D functions in the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as a name. The default y-variable is 'Y'. (For more information, see "More About 3D Plotting.")

YVAR is located in the Sparcom PLOT3 VAR menu (if the plot type is FUNC3).

Entry Method(s)

Input	Output
1: y _{var} (name)	1:

Input	Output				
'y' YVAR					

ZRNG3: z-Axis Display Range (3D)

This command specifies the z-axis display range for the Sparcom 3D Graphics Environment. This information is stored in the global variable 'PPAR3' as z_{min} and z_{max} in the vectors [$x_{min} y_{min} z_{min}$] and [$x_{max} y_{max} z_{max}$]. These two vectors specify the coordinates of two opposite corners of the display volume. The default z-axis display range is -5 to 5. (For more information, see "More About 3D Plotting.")

ZRNG3 is located in the Sparcom PLOT3 RNG menu.

Entry Metho	d(s)
-------------	------

Input	Output			
2: z _{min}	2:			
1: z _{max}	1:			

Input	Output				
-55 ZRNG					

Chapter 13

Differential Equations Plotting

Differential equations plotting is accomplished with numerical approximation routines utilizing different variations of Euler's Method and the 4th-order Runge-Kutta method. A slope field routine is also included, to help you visualize multiple solution curves.

This chapter covers:

- Using Differential Equations Plotting
- DIFEQ: Sparcom DIFEQ Menu
- **EULER:** Euler's Method
- EMID: Euler's Method (Midpoint)
- EMOD: Modified Euler's Method
- RK4: Runge-Kutta Method (4th-Order)
- SLPFD: Slope Field

Using Differential Equations Plotting

The Sparcom DIFEQ menu is accessible from the Plotting Toolkit. To get to the Plotting Toolkit, follow these steps:

- Press 🖛 LERARY to display all libraries available to your HP 48SX.
- **2** Find and press **CALCU** to display the Calculus Pac Library menu.
- O Press the fourth softkey, **PLOT**, to display the Plotting Toolkit menu:

{ HOME }	
4:	
3.	
1:	
PLOT2 PLOT3 DIFER GRF	2 GRF3 PKEY

At this point, press **DIFEQ** to display the Sparcom DIFEQ menu.

DIFEQ: Sparcom DIFEQ Menu

The Sparcom DIFEQ menu plots numerical approximations and slope fields for derivatives. The HP 48SX PLOTR menu or the Sparcom PLOT2 menu are used to specify the 2D plot parameters, so you should familiarize yourself with Chapter 11, "2D Plotting."

Using the Sparcom DIFEQ Menu

There are two ways to access the Sparcom DIFEQ menu from the stack:

- Press Provide to display the enhanced Plot menu and press Press to display the Sparcom DIFEQ menu. (The Sparcom Plotting Keys must be installed and User mode must be turned on. For more information, see "PKEY: Sparcom Plotting Keys" in Chapter 10.)
- Press GIERARY CALCU PLOT DIFEQ to display the DIFEQ menu.

There is one way to access the DIFEQ menu from the interactive menus:

Press GENER CALCU CALCU to access the Main menu, move the pointer to "Plotting: Diff. Eqns.," press ENER to display the information screen about differential equation plotting, and press ATTN to display the Sparcom DIFEQ menu. (This will automatically install the Sparcom Plotting Keys and turn on User mode. For more information, see "PKEY: Sparcom Plotting Keys" in Chapter 10.)

The Sparcom DIFEQ menu is summarized below.

Sparcom	DIFEQ	Menu	0	perations
---------	-------	------	---	-----------

Screen	Softkeys					
Sparcom DIFEQ Menu	EULER	EMID	emod	RK4	SLPFD	

Key	Description	
EULER	Graphs Euler's method applied to dy/dx.	
EMID	Graphs Euler's method (midpoint) applied to dy/dx.	
EMOD	Graphs the modified Euler's method applied to dy/dx.	
RK4	Graphs the 4th-order Runge-Kutta method applied to dy/dx.	
SLPFD	Graphs the slope field of dy/dx.	

EULER: Euler's Method

This command graphs the results of Euler's Method as applied to dy/dx in terms of x, y, or x and y. Euler's Method is defined by these equations:

 $\frac{dy}{dx} = f'(x, y), \text{ initial condition } f(x_0) = y_0$ $x_n = x_0 + nh, \ n = 0, 1, 2, \dots, N, \ h \text{ is stepsize}$ $y_{n+1} = y_n + hf'(x_n, y_n)$

Entry Method(s)

Input	Output
3: derivative, dy/dx	3:
2: initial condition, (x_0, y_0)	2:
1: stepsize, h (real)	1:

Example(s)

Plot the solution curve of the initial value problem $\frac{dy}{dx} = f'(x, y) = y\sin(3x)$, initial condition f(0) = 1, with a stepsize h = .2. To do this, follow these steps:

- Set the 2D plot parameters. To do this, press refer to display the PLOTR or PLOT2 menu. Then type 0 ref 4 **XENC** to set the x-range to 0-4 and type 0 ref 2 **XENC** to set the y-range to 0-2. Press **EFASE** to erase PICT.
- Enter the derivative 'Y*SIN(3*X)' by typing Y ★ SIN 3 ★ C X ENTER. If necessary, press ♣ AAD to set Radians mode.
- S Enter the initial condition (0,1) by typing $\bigcirc 0 \bigcirc 1$ ENTER.
- Enter the stepsize .2 by typing .2 ENTER.
- If necessary, press return to the Sparcom DIFEQ menu and press
 If necessary, press return to the solution curve:

③ Press ATN when you have finished viewing the plot.

EMID: Euler's Method (Midpoint)

This command graphs the results of Euler's Method as applied to dy/dx in terms of x, y, or x and y. Euler's Method (Midpoint) is defined by these equations:

$$\frac{dy}{dx} = f'(x, y)$$
, initial condition $f(x_0) = y_0$

$$x_n = x_0 + nh$$
, $n = 0, 1, 2, ..., N$, *h* is stepsize

$$y_{n+1} = y_n + hf'(x_n + \frac{h}{2}, y_n)$$

Entry Method(s)

Input	Output
3: derivative, dy/dx	3:
2: initial condition, (x_0, y_0)	2:
1: stepsize, h (real)	1:

Example(s)

See "EULER: Euler's Method" for an example.

EMOD: Modified Euler's Method

This command graphs the results of Euler's Method as applied to dy/dx in terms of x, y, or x and y. Modified Euler's Method is defined by these equations:

$$\frac{dy}{dx} = f'(x, y), \text{ initial condition } f(x_0) = y_0$$
$$x_n = x_0 + nh, \ n = 0, 1, 2, \dots, N, \ h \text{ is stepsize}$$
$$y_{n+1} = y_n + \frac{hf'(x_n, y_n) + hf'(x_n + h, y_n)}{2}$$

Entry Method(s)

Input	Output
3: derivative, dy/dx	3:
2: initial condition, (x_0, y_0)	2:
1: stepsize, h (real)	1:

Example(s)

See "EULER: Euler's Method" for an example.

RK4: Runge-Kutta Method (4th-Order)

This command graphs the results of the 4th-order Runge-Kutta method as applied to dy/dx in terms of x, y, or x and y. The 4th-order Runge-Kutta method is defined by these equations:

$$\frac{dy}{dx} = f'(x, y), \text{ initial condition } f(x_0) = y_0$$

$$x_n = x_0 + nh, \ n = 0, 1, 2, \dots, N, \ h \text{ is stepsize}$$

$$k_1 = hf'(x_n, y_n)$$

$$k_2 = hf'(x_n + \frac{h}{2}, y_n + \frac{k_1}{2})$$

$$k_3 = hf'(x_n + \frac{h}{2}, y_n + \frac{k_2}{2})$$

$$k_4 = hf'(x_n + h, y_n + k_3)$$

$y_{n+1} = y_n + \frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6} + O(h^5)$

Entry Method(s)

Input	Output
3: derivative, dy/dx	3:
2: initial condition, (x_0, y_0)	2:
1: stepsize, h (real)	1:

Example(s)

See "EULER: Euler's Method" for an example.

SLPFD: Slope Field

This command plots a set of small line segments of appropriate slope at specified lattice points, given dy/dx in terms of x, y, or x and y.

Lattice Dimensions

The default lattice structure is 12 horizontal lattice points, 6 vertical lattice points, and slope field lines 70% of the width of the lattice squares. You can override these default values by storing a list of three values in the global variable 'Lattice'—for example, storing { 12 6 .7 } would be identical to the default, while storing { 10 10 .5 } would create a 10 x 10 lattice grid with slope field lines 50% of the width of the lattice squares. The first two values in 'Lattice' must be positive integers, while the third value should range from .1 (10%) up to 1 (100%) to control the length of the slope field lines. To return to the default lattice structure, simply purge 'Lattice', using the command PURGE.

Entry Method(s)

Input	Output
1: derivative, dy/dx	1:

Example(s)

Overlay a 10 x 10 x .5 lattice slope field on the solution curve plotted in the EULER example for the equation $\frac{dy}{dx} = f'(x, y) = y\sin(3x)$. To do this, follow these steps:

- If necessary, set the 2D plot parameters. To do this, press represented to display the PLOTR or PLOT2 menu. Then type 0 set 4 kinke to set the x-range to 0-4 and type 0 set 2 kinke to set the y-range to 0-2.
- Specify the custom lattice dimensions by typing [1] 10 set 10 set .5
 ENER to put the list { 10 10 .5 } on the stack. Then type [10 set L
 attice ENER STO to store the list into the global variable 'Lattice' (name is case-sensitive).
- Some the derivative 'Y*SIN(3*X)' by typing [↑] [∞] Y ^{*} ^{SIN} 3 ^{*} [∞] X ENTER. If necessary, press [←] ^{RAD} to set Radians mode.

If necessary, press return to the Sparcom DIFEQ menu and press SLPFD to draw the slope field:

6 Press ATTN when you have finished viewing the plot.

170 13: Differential Equations Plotting

Chapter 14

Vector Toolkit

The Vector Toolkit organizes 25 of the programmable commands in the Calculus Pac into one menu for easy access from the stack. All of the commands are used to manipulate symbolic vectors.

This chapter covers:

- Using the Vector Toolkit
- What is a Symbolic Vector?
- VKEY: Sparcom Vector Kevs
- $\overline{\Box}$ SIMPL: Simplifying Symbolic Results
- VUNIT: Unit Vector
- VCROS: Cross Product
- VDOT: Dot Product
- VABS: Vector Length (Norm)
- **GRD:** Gradient
- **DIV:** Divergence
- CURL: Curl
- LAPL: Laplacian
- V1OP: Unary Vector Operation
- ō V2OP: Binary Vector Operation
- V+: Vector Addition
- V-: Vector Subtraction
- V*: Vector Multiplication
- V/: Vector Division
- VDER: Vector Derivative
- VINT: Vector Integral
- \Box $SV \rightarrow$: Vector to Stack
- \rightarrow SV2: Stack to 2-Element Vector
- →SV3: Stack to 3-Element Vector
- **VEVAL: Vector Evaluate**
- $V \rightarrow Q$: Vector to Quotient
- $V \rightarrow NUM$: Vector Evaluate to Number
- **VNEG: Vector Negate**

Using the Vector Toolkit

To get to the Vector Toolkit, follow these steps:

- **O** Press **G URAR** to display all libraries available to your HP 48SX.
- 2 Find and press **CALCU** to display the Calculus Pac Library menu.
- Press the fifth softkey, **VECT**, to display the Vector Toolkit menu:

ł	HOME	}
4	:	
lЗ	:	
ĺŹ	:	
1	:	
Ū	KEY SI	MPL VUNIT VCROS VDOT VABS

The Vector Toolkit menu lists the 25 programmable commands used to manipulate symbolic vectors.

Screen	Softkeys					
Vector Toolkit	VKEY GRD V+ SV→ VNEG	SIMPL DIV V- →SV2	VUNIT CURL V* →SV3	VCROS LAPL V VEVAL	VDOT V1OP VDER V→Q	VABS V2OP VINT V⊐NU

Vector Toolkit Operations

What is a Symbolic Vector?

The HP 48SX supports both real and complex vectors, but not symbolic vectors. An example of a real vector is [1 2 3], while an example of a complex vector is [(0,1)(1,2)]. However, the object [X Y Z] is not allowed by the HP 48SX. The Calculus Pac circumvents this by treating lists as symbolic vectors. An example of such a *list vector* is $\{X Y Z\}$. Hereafter, when the term *vector* is used, it refers to either a real vector, a complex vector, or a list vector. To be considered a vector, an object must satisfy the following criteria:

- A vector can be a real or complex array of one dimension. This eliminates *matrices*, such as [[12][34]], which has more than one dimension. The term *two-dimensional vector* refers to a vector with two elements, such as [12].
- A vector can be a list of items without further sub-lists, such as { X Y } or { 1 2 3 4 }, but not { { X Y } { W Z } }. The latter might be a symbolic matrix, but symbolic matrices are not used or supported by the HP 48SX or the Calculus Pac.
- A vector must always contain at least one element. Therefore, the empty objects [] and {} are invalid vectors.
- A vector is made up of scalar components, where a *scalar* is a real number, complex number, global name, local name, symbolic expression, or unit object. Scalar components can be mixed in a vector, but if any of the components are not real numbers or complex numbers, then the vector must be a list vector, such as { X Y } or { 1 (2,3) Z 'SIN(X)' 120_ft }; otherwise, if all of the components are real numbers, the vector may be either a real vector *or* a list vector, such as [1 2] or { 1 2 }; if all the components of a vector are complex numbers, the vector may be either a complex vector *or* a list vector, such as [(3,4) (5,6)] or { (3,4) (5,6) }.

All commands in the Vector Toolkit accept vectors that satisfy these criteria. Vector Toolkit commands will return results as real or complex vectors if possible, or as list vectors if not possible. For example, adding $\{123\}$ to $\{456\}$ will return [579], but adding $\{12\}$ to $\{XY\}$ will return $\{'1+X''2+Y''\}$.

VKEY: Sparcom Vector Keys

This command installs or removes the Sparcom Vector Keys. The Sparcom Vector Keys are designed to support symbolic vector operations in a transparent fashion, without inhibiting normal use of your HP 48SX.

If the Sparcom Vector Keys are not installed, executing VKEY will install them, overwriting any user-key assignments for $(+, -, *, \pm, \pm)$, (-), (

When the Sparcom Vector Keys are installed and your HP 48SX is in User Mode, certain keys on your HP 48SX keyboard will be re-defined as follows:

Key	Action
+	V+
-	V–
*	V*
<u> </u>	V/
	VDER
	VINT
EVAL	VEVAL

Sparcom Vector Keys

Key	Action
(V→Q
	V→NUM
+/-	VNEG
2 D	SV→
	→SV2
→ 3D	SV→
	→SV3

Entry Method(s)

Input	Output	
1:	1:	

Note(s)

When the Sparcom Vector Keys are installed, you will not be able to interactively edit the list of user-key assignments returned by RCLKEYS. This is because the objects assigned to keys 95.1, 85.1, 75.1, 65.1, 41.3, 42.3, 33.1, 33.2, 33.3, 53.2, 53.3, and 52.1 are system RPL objects and your HP 48SX cannot edit them directly. If you wish to edit the list of user-key assignments, you must either first remove the Sparcom Vector Keys or you must use commands such as REPL or the Interactive Stack to *indirectly* edit the list without placing it on the command line. If you accidentally attempt to interactively edit the list of userkey assignments when the Sparcom Vector Keys are installed, you will have to press ON-C to abort the editing operation and return to the stack. (Pressing ON-C will *not* damage user memory, but it *will* clear the stack and return to the HOME directory.)

The Calculus Pac must be installed in your HP 48SX for the Sparcom Vector Keys to work correctly. If you remove the Calculus Pac while the Sparcom Vector Keys are installed and your HP 48SX is in User mode, the re-defined keys will behave as if the Sparcom Vector Keys were not installed. Upon re-installing the Calculus Pac and re-entering User mode, the re-defined keys will resume their customized functions.

When the Sparcom Vector Keys are installed and your HP 48SX is in User mode, the following keys will behave slightly differently than normal:

- → will not concatenate two lists, but will attempt to add them element-wise. Also, + will not append or prepend an object to a list, but will attempt to add the object to each element of the list. (For more information, see "V+: Vector Addition.") To concatenate two lists or to append or prepend an object to a list, press →
- Evaluate.") To disassemble and evaluate a list, but will attempt to evaluate it element-wise. (For more information, see "VEVAL: Vector Evaluate.") To disassemble and evaluate a list, press PCEVAL ENTER to execute the normal EVAL command.

SIMPL: Symbolic Simplification

See "SIMPL: Symbolic Simplification" in Chapter 8.

VUNIT: Unit Vector

This command normalizes a vector to unit length, where unit length is determined by dividing the vector element-wise by its length (norm).

Entry Method(s)

Input	Output	
1: vector	1: unit vector	

Input	Output
[43] VUNTT	[.8.6]
{XYZ} WUNIF	$ \{ 'X / \sqrt{(X^*X + Y^*Y + Z^*Z)'} \\ 'Y / \sqrt{(X^*X + Y^*Y + Z^*Z)'} \\ 'Z / \sqrt{(X^*X + Y^*Y + Z^*Z)'} \} $

VCROS: Cross Product

This command returns the cross product of two three-dimensional vectors as a three-dimensional vector. VCROS is a superset of CROSS, extended to support symbolic vectors.

Entry Method(s)

Input	Output
2: three-dimensional vector	2:
1: three-dimensional vector	1: cross product

Input	Output
$\{X Y Z \} \{X Y Z \}$ wortos	[000]
{ X Y Z } [1 2 10] VOROS	{ 'Y*10-2*Z' 'Z-10*X' 'X*2-Y' }

VDOT: Dot Product

This command returns the numeric or symbolic dot product of two vectors of equal size. VDOT is a superset of DOT, extended to support symbolic vectors, but not symbolic matrices.

Entry Method(s)

Input	Output
2: vector 1	2:
1: vector 2 (of same dimension)	1: dot product

Input	Output
{ 1 2 3 } [4 5 6] VDOT	32
{ W X Y Z } { 9 8 7 1 } VDOT	'W*9+X*8+Y*7+Z'
VABS: Vector Length (Norm)

This command returns the length of a vector, which is the square root of the sum of the squares of the elements. VABS is a superset of ABS, extended to support symbolic vectors.

Entry Method(s)

Input	Output
1: vector	1: vector length

Input	Output
[123] VABS	3.74165738677
{XYZ} WABS	$\sqrt{(X^*X+Y^*Y+Z^*Z)'}$

GRD: Gradient

This command returns the gradient of a scalar as a three-dimensional vector. The result returned depends on the coordinate mode setting of the HP 48SX rectangular, cylindrical, or spherical. (For more information about coordinate modes, see Chapter 12 of the HP 48SX Owner's Manual, "Vectors.")

Coordinate Variables

For the purpose of taking derivatives, the default coordinates are { X Y Z } for rectangular mode, { R T Z } for cylindrical mode, and { R T P } for spherical mode. You can override these default coordinates by storing a list of six names in the global variable 'Coords'—for example, storing { X Y Z R T P } would be identical to the default, while storing { x y z $\rho \theta \phi$ } might be an alternative. If any of the coordinate variables exist in the current or parent directories, they will be evaluated to numbers in the result, so you may wish to purge the coordinate variables before executing this command. To return to the default coordinate variables, simply purge 'Coords', using the command PURGE.

Input	Output
1: scalar	1: gradient (three-dimensional vec- tor)

Entry Method(s)

Example(s)

Input	Output
10 GRD	[000]
'X*Y' GRD	{ Y X 0 }
'R*T*Z' GRD	{ 'T*Z' 'Z' 'R*T' }

Note(s)

Second example uses XYZ mode.

Third example uses RZ (cylindrical) mode. Apply SIMPL to result.

All examples use default coordinate variables of { X Y Z R T P }.

DIV: Divergence

This command returns the divergence of a three-dimensional vector as a scalar. The result returned depends on the coordinate mode setting of the HP 48SX rectangular, cylindrical, or spherical. (For more information about coordinate modes, see Chapter 12 of the HP 48SX Owner's Manual, "Vectors.")

Coordinate Variables

See "GRD: Gradient."

Entry Method(s)

Input	Output
1: three-dimensional vector	1: divergence

Example(s)

Input	Output
	3
{RTZ}	'3+INV(R)'

Note(s)

Second example uses XYZ mode.

Third example uses RZ (cylindrical) mode. Apply SIMPL to result.

All examples use default coordinate variables of { X Y Z R T P }.

CURL: Curl

This command returns the curl of a three-dimensional vector as a three-dimensional vector. The result returned depends on the coordinate mode setting of the HP 48SX—rectangular, cylindrical, or spherical. (For more information about coordinate modes, see Chapter 12 of the HP 48SX Owner's Manual, "Vectors.")

Coordinate Variables

See "GRD: Gradient."

Entry Method(s)

Input	Output
1: three-dimensional vector	1: curl (three-dimensional vector)

Example(s)

Input	Output
[123] CURL	[000]
{XYZ} CURL	[000]
{ 'R*T' 'T*Z' 'R*Z' } @URI	{ '-T' '-Z' '-1+INV(R)*T*Z' }

Note(s)

Third example uses R∡Z (cylindrical) mode. Apply SIMPL to result.

All examples use default coordinate variables of { X Y Z R T P }.

LAPL: Laplacian

This command returns the Laplacian of a scalar as a scalar. (**LAPL** can be applied to a vector element-wise using **VIOP**.) The result returned depends on the coordinate mode setting of the HP 48SX—rectangular, cylindrical, or spherical. (For more information about coordinate modes, see Chapter 12 of the HP 48SX Owner's Manual, "Vectors.")

Coordinate Variables

See "GRD: Gradient."

Entry Method(s)

Input	Output
1: scalar	1: Laplacian

Example(s)

Input	Output
10 LAPL	0
'R^2*0^2*\$\$	$^{2*}COS(\theta)/SIN(\theta)^{*}\theta^{*}\varphi^{*}2+2^{*}SIN(\theta)^{-}2^{*}\theta^{*}2+6^{*}\theta^{*}2^{*}\varphi^{*}2+2^{*}\varphi^{*}2'$

Note(s)

Second example uses Radians mode, R44 (spherical) mode, and custom coordinate variables { X Y Z R $\theta \phi$ }. (Enter θ by \heartsuit **F** and ϕ by \boxdot O **F** 9). Apply **SIMPL** to result.

V1OP: Unary Vector Operation

This command applies a unary operation to a single vector element-wise. The operation should take one argument and return one argument, which will be inserted into the appropriate place in the result vector. Any valid operation is allowed—list, program, command, or other object—provided it takes exactly one argument from the stack and returns exactly one argument to the stack.

Entry Method(s)

Input	Output
2: vector	2:
1: operation (list,program, command)	1: result vector

Input	Output
{ 1 2 3 } { SQ } VIOP	[149]
$\{ -1 -4 4 0 3 \} \ll 2 > $ » Viop	[00101]

V2OP: Binary Vector Operation

This command applies a binary operation to two vectors element-wise. The operation should take two arguments and return one argument, which will be inserted into the appropriate place in the result vector. Any valid operation is allowed—list, program, command, or other object—provided it takes exactly two arguments from the stack and returns exactly one argument to the stack.

Entry Method(s)

Input	Output
3: vector 1	3:
2: vector 2	2:
1: operation (list,program, command)	1: result vector

Example(s)

Input	Output
$\{123\}[456]\{+\}$ V20P	[579]
$\{ABC\}\{DEF\} $ «*» V20P	{ 'A*D' 'B*E' 'C*F' }

Note(s)

First example is equivalent to **V+**.

V+: Vector Addition

This command adds a scalar or vector to another vector element-wise. V+ is a superset of +, extended to support interactions between symbolic vectors and scalars. V+ does not concatenate two lists (as does +), but rather attempts to add them element-wise. V+ does not append or prepend an object to a list (as does +), but rather attempts to add the object to each element of the list. (For more information, see "VKEY: Sparcom Vector Keys.")

Entry Method(s)

Input	Output
2: scalar or vector	2:
1: scalar or vector (of same dimen- sion)	1: result vector

Input	Output
[123]{XYZ}	{ '1+X' '2+Y' '3+Z' }
3 { X Y } ■V+	{ '3+X' '3+Y' }
{ X Y } 3 V +	{ 'X+3' 'Y+3' }
$\{ 10_{ft 1_h} \} \{ 12_{in 10_s} \}$	{ 132_in 3610_s }

V-: Vector Subtraction

This command subtracts a scalar or vector from another vector or scalar element-wise. V- is a superset of -, extended to support interactions between symbolic vectors and scalars.

Entry Method(s)

Input	Output
2: scalar or vector	2:
1: scalar or vector (of same dimen- sion)	1: result vector

Input	Output
[123]{XYZ} V-	{ '1-X' '2-Y' '3-Z' }
3 { X Y } V-	{ '3-X' '3-Y' }
{ X Y } 3 V-	{ 'X-3' 'Y-3' }

V*: Vector Multiplication

This command multiplies a scalar or vector to another vector element-wise. V^* is a superset of *, extended to support interactions between symbolic vectors and scalars, except that V^* is meaningless for two vectors.

Entry Method(s)

Input	Output
2: scalar or vector	2:
1: scalar or vector	1: result vector

Input	Output
[123]3 V*	[369]
3 { X Y } • •	{ '3*X' '3*Y' }

V/: Vector Division

This command divides a scalar or vector into another vector element-wise. V/ is a superset of /, extended to support interactions between symbolic vectors and scalars, except that V/ is meaningless for two vectors.

Entry Method(s)

Input	Output
2: scalar or vector	2:
1: scalar or vector	1: result vector

Input	Output
[369]3	[123]
3 { X Y }	{ '3/X' '3/Y' }

VDER: Vector Derivative

This command differentiates a vector element-wise with respect to the specified variable. VDER is a superset of ∂ , extended to support symbolic vectors.

Entry Method(s)

Input	Output
2: vector	2:
1: variable (name)	1: result vector

Input	Output
[123]'X' VDER	[000]
{ '2*X' 'X*Y' } 'X' VDER	{ 2 Y }

VINT: Vector Integral

This command integrates a vector element-wise with respect to the specified variable and over the specified interval. VINT is a superset of \int , extended to support symbolic vectors.

Input	Output
4: interval start (scalar)	4:
3: interval end (scalar)	3:
2: vector	2:
1: variable (name)	1: result vector

Entry Method(s)

Example(s)

Input	Output
0 ' π ' { 'SIN(X)' 'COS(X)' } 'X' VINT	[20]

Note(s)

Example uses Radians mode.

SV \rightarrow : Vector to Stack

This command disassembles a vector. $SV \rightarrow$ is a superset of $V \rightarrow$, extended to support symbolic vectors.

Entry Method(s)

Input	Output
N:	N: scalar 1
1: n-dimensional vector	1: scalar N

Input	Output
[123] SV →	123
{ X Y } ■SV→	'X' 'Y'

→SV2: Stack to 2-Element Vector

This command assembles a two-dimensional vector. \rightarrow SV2 is a superset of \rightarrow V2, extended to support symbolic vectors. \rightarrow SV2 does not distinguish among XYZ, R4Z, and R44 modes when assembling a symbolic vector. \rightarrow SV2 does not assemble a complex number when flag –19 (Complex Mode Flag) is set; it always assembles a vector. (For more information, see "VKEY: Sparcom Vector Keys.")

Entry Method(s)

Input	Output
2: scalar 1	2:
1: scalar 2	1: two-dimensional vector

Input	Output
'X' 'Y' ≕SV2	{ X Y }
1 2 ∋sv2	[12]

\rightarrow SV3: Stack to 3-Element Vector

This command assembles a three-dimensional vector. \rightarrow SV3 is a superset of \rightarrow V3, extended to support symbolic vectors. \rightarrow SV3 does not distinguish among XYZ, R4Z, and R44 modes when assembling a symbolic vector.

Entry Method(s)

Input	Output
3: scalar 1	3:
2: scalar 2	2:
1: scalar 3	1: three-dimensional vector

Input	Output
'X' 'Y' 'Z' ⊒SV2	{ X Y Z }
123 -SV2	[123]

VEVAL: Vector Evaluate

This command evaluates a vector element-wise. VEVAL is a superset of EVAL, extended to support symbolic vectors. VEVAL does not disassemble and evaluate a list (as does EVAL), but rather attempts to evaluate it element-wise.

Entry Method(s)

Input	Output
1: vector	1: result vector

Example(s)

Input	Output
{ '1+2' '2+3' } VEVAL	[35]
{XYZ} VEVAL	See Note(s)

Note(s)

The result of the second example will depend on the contents of the global variables X, Y, and Z. If none of them exist, the result will be $\{X Y Z\}$; otherwise, the result will vary.

$V \rightarrow Q$: Vector to Quotient

This command converts a vector to a rational form element-wise. $V \rightarrow Q$ is a superset of $\rightarrow Q$, extended to support symbolic vectors.

Entry Method(s)

Input	Output
1: vector	1: result vector

Input	Output
[1.5 4.8] V → Q	{ '3/2' '24/5' }

V→NUM: Vector Evaluate to Number

This command evaluates a vector into a numerical result element-wise. $V \rightarrow NUM$ is a superset of $\rightarrow NUM$, extended to support symbolic vectors.

Entry Method(s)

Input	Output
1: vector	1: result vector

Example(s)

Input	Output	
{ '1+2' '2+3' } V⊐NU	[35]	
{XYZ} VINU	See Note(s)	

Note(s)

The result of the second example will depend on the contents of the global variables X, Y, and Z. If none of them exist, the result will be $\{X \ Y \ Z \}$; otherwise, the result will vary.

VNEG: Vector Negate

This command changes the sign of a vector element-wise. VNEG is a superset of NEG, extended to support symbolic vectors.

Entry Method(s)

Input	Output
1: vector	1: result vector

Input	Output
[123] VNEC	[-1-2-3]
{XY} VINEC	{ '-X' '-Y' }

200 14: Vector Toolkit

Appendices and Index

Appendix A

Warranty and Service

Pocket Professional[™] Support

You can get answers to your questions about using your Pocket Professional[™] Pac from Sparcom. If you don't find the information in this manual or in the HP 48SX Owner's Manual, contact us in one of the following ways:

• E-Mail

From Internet: support@sparcom.com From Compuserve: >Internet:support@sparcom.com From FidoNet: To:support@sparcom.com

Standard Mail

Sparcom Corporation 897 NW Grant Avenue Corvallis, OR 97330 Attn: Technical Support Department

O Telephone

(503) 757–8416 9 a.m. – 5 p.m. Pacific Standard Time

• FAX

(503) 753-7821

Limited One-Year Warranty

What is Covered

A Pocket Professional[™] Pac is warranted by Sparcom Corporation against defects in material and workmanship for one year from the date of original purchase. If you sell your application card or give it as a gift, the warranty is automatically transferred to the new owner and remains in effect for the original one-year period. During the warranty period, we will repair or replace (at no charge) a product that proves to be defective, provided you return the product and proof of purchase, shipping prepaid, to Sparcom.

What is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of service or modification by any entity other than Sparcom Corporation.

No other warranty is given. The repair or replacement of a product is your exclusive remedy. ANY OTHER IMPLIED WARRANTY OF MERCHANT-ABILITY OR FITNESS IS LIMITED TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. IN NO EVENT SHALL SPARCOM CORPORATION BE LIABLE FOR CONSEQUENTIAL DAMAGES. Products are sold on the basis of specifications applicable at the time of manufacture. Sparcom shall have no obligation to modify or update products, once sold.

If the Application Card Requires Service

Sparcom will repair an application card, or replace it with the same model or one of equal or better functionality, whether it is under warranty or not.

Service Charge

There is a fixed charge for standard out-of-warranty repairs. This charge is subject to the customer's local sales or value-added tax, wherever applicable. Application cards damaged by accident or misuse are not covered by fixed charges. These charges are individually determined based on time and material.

Shipping Instructions

If your application card requires service, ship it to the above address and:

- **1** Include your return address and a description of the problem.
- 2 Include a proof of purchase date if the warranty has not expired.
- Include a purchase order, along with a check or credit card number and expiration date (VISA or MasterCard), to cover the standard repair charge.
- Ship your application card, postage prepaid, in protective packaging adequate to prevent damage. Shipping damage is not covered by the warranty, so insuring the shipment is recommended.

Application cards are usually serviced and re-shipped within five working days.

Environmental Limits

The reliability of an application card depends upon the following temperature and humidity limits:

- Operating Temperature: 0 to 45° C (32 to 113° F).
- **2** Storage Temperature: -20 to 60° C (-4 to 140° F).
- Operating and Storage Humidity: 90% relative humidity at 40° C (104° F) maximum.

206 A: Warranty and Service

Appendix B

Piecewise Functions

This appendix describes in detail the entry and syntax of piecewise functions. (For more information, see "Entering a Piecewise Function" in Chapter 2.)

What is a Piecewise Function?

Piecewise functions are functions that take on different functional forms (*expressions*) over different regions of the independent variable (*regions*):

 $f(x) = \begin{cases} expression \ l & region \ 1 \\ expression \ 2 & region \ 2 \end{cases}$

The HP 48SX supports these types of functions by means of the IFTE command:

f(x) = IFTE(region 1, expression 1, expression 2)

(For more information about IFTE, see Chapter 26 of the HP 48SX Owner's Manual, "Tests and Conditional Structures.")

The Calculus Pac enables you to easily enter piecewise functions by a sequence of interactive prompts.

The input at each prompt defines a single term in the piecewise function and requires two arguments: an expression and a region. The sequence of prompts is terminated by pressing **ENTER** with a blank command line, and the piecewise function is then created.

The result will be an equation describing the piecewise function by means of nested IFTE commands. If PWISE was executed from the interactive menus, the result will be displayed in a result screen; otherwise, if PWISE was executed from the stack, the result will be returned to level 1.

Entry Rules

There are a few rules that must be followed to correctly specify piecewise functions:

- Use == in place of =. The HP 48SX uses the = operator only for assigning variables, while the == command is used to check for equality. Therefore, the region x = 0 should be entered as 'X==0'. See Example 1.
- To make a section of a piecewise function undefined, press MAT UNDE to enter UNDEFINED as the expression for the term, along with the corresponding region. An UNDEFINED term will automatically be appended to complete all one-term piecewise functions. (Note: UNDEFINED is simply a global name that presumably does not exist in user memory and will therefore remain unevaluated when plotting.) See Example 2.
- Always specify terms in the function in order of increasing regions. For example, specify the term for the region x < -3 before the term for the region x < 3. This is because the HP 48SX will not properly evaluate expressions like '-3<X<3', so this region must be entered as 'X<3'. However, this would incorrectly imply that the corresponding expression should be used for *all* values of X less than 3, so you must have first entered a term for the region X \leq -3. See **Example 3**.
- Ø For regions like x = 2,3 the entry must be split into two separate terms because the HP 48SX will not recognize an expression like 'X==2,3'. Therefore, enter the same expression twice, for two different regions, one 'X==2' and one 'X==3'. Also, enter *more* specific terms (such 'X==2') before *less* specific terms (such as 'X≠2'). See Example 4.
- The region of the final term is *always* ignored, because it is assumed that the expression of the final term governs all remaining values of the independent variable not specified by the regions of all previous terms. (Note in the generalized piecewise function shown at the beginning of this section that the second region is unnecessary and therefore ignored in the IFTE command.) For this reason, the region of the final term does not have to be strictly correct, but it must still be a valid HP 48SX equation. For example, if the first region is 'X==2' and the second region is 'X==3', the third region *should* be 'X≠2,3', but since the HP 48SX will not recognize an expression like that, it can be safely entered as 'X≠2' because it will be ignored. See Example 4.

Examples

Example 1: Define the piecewise function $f(x) = \begin{cases} \sin(x)/x & x \neq 0 \\ 1 & x = 0 \end{cases}$

This will require two terms.

The first term consists of the expression SIN(X)/X' and the region $X \neq 0'$. Enter this information until your screen appears as follows:

{ HOM	E SPAI	RCOM	CALCUD	AL }	G PRG
Ente → e×	er to (pre:	erm ssic	or E on re	NTE	R: n
(eq	Î		eq	in)	
·SIN	ι(Χ). ,≠	/X'	'X≠t	1' ≜	à

Press ENTER to accept the first term. You will be prompted for another term.

The second term consists of the expression 1 and the region 'X==0'. Enter this information until your screen appears as follows.

{ HOME	SPARCOM (ALCUD	ALC }	5 PRG
Enter term or ENTER: → expression region (eqn eqn)				
1 'X=	=0' ≠ <	>	ź	à

Press ENTER to accept the second term. You will be prompted for another term.

At this third prompt, press **ENER** to terminate the entry, and the result will be calculated (display assumes PWISE was executed from the interactive menus):

The result can be viewed in the EquationWriter, copied to the stack, or printed on an IR printer. When you have finished viewing the result, press **WPP** to return to the Function Library menu, **MATIN** to return to the Main menu, or **ATIN** to quit the Calculus Pac. **Example 2:** Define the piecewise function $f(x) = \begin{cases} \sin(x)/x & x \neq 0\\ undefined & x = 0 \end{cases}$

This will require either one or two terms, because if you enter only a single term, the second, UNDEFINED term will automatically be appended.

The first term consists of the expression SIN(X)/X' and the region $X \neq 0'$. Enter this information until your screen appears as follows:

{ HOME SPARCOM CALCUD }	ALG PRG
Enter term or EN → expression reg (eqn eqn	TER: ion)
'SIN(X)∕X' 'X≠0' ≕ ≠ < >	£ 1 2

Press ENIER to accept the first term. You will be prompted for another term.

At this second prompts, you can either press $\boxed{\text{ENER}}$ to terminate the entry, or enter a second term, which will consist of the expression UNDEFINED and the region 'X==0'. If you choose to enter the second term, enter this information until your screen appears as follows:

{ HOM	E SPA	COM (CALCUD	AL }	G PRG
Enter term or ENTER:					
UNDEFINED 'X==0'					
==	≠	<	>	_ ≦	_ è

Press ENTER to accept the second term. You will be prompted for another term.

At this third prompt (or at the second prompt if you choose not to enter the second term), press **ENTER** to terminate the entry, and the result will be calculated (display assumes PWISE was executed from the interactive menus):

The result can be viewed in the EquationWriter, copied to the stack, or printed on an IR printer. When you have finished viewing the result, press **UP** to return to the Function Library menu, **MATN** to return to the Main menu, or **ATN** to quit the Calculus Pac. Example 3: Define the piecewise function $f(x) = \begin{cases} 3x+2 & x < -3 \\ 2x+7 & -3 \le x \le 2. \\ 7x-2 & x > 2 \end{cases}$

This will require three terms.

The first term consists of the expression '3*X+2' and the region 'X<-3'. Enter this information until your screen appears as follows:

{ HOME SPAR	COM CALCU	ALG PRG D }
Enter te → expres (eqn	rm or l sion r e	ENTER: egion qn)
'3*X+2' ≕ ≠	'X<-3'	é è

Press ENTER to accept the first term. You will be prompted for another term.

The second term consists of the expression '2*X+7' and the region 'X $\leq 2'$. Enter this information until your screen appears as follows.

{ HOME S	PARCOM C	ALCUD	ALC }	5 PRG
Enter	term Tessio	or E n re	NTER	2:
(eqn		eq ol	n)	
2*8*	Λ÷	2	ź	à

Press ENTER to accept the second term. You will be prompted for another term.

The third term consists of the expression '7*X-2' and the region 'X>2'. Enter this information until your screen appears as follows.

{ HOME SPAR	COM CALCUD	ALG PRG
Enter te → expres (eqn	rm or E sion re eq	NTER:
'7*X-2' ≕ ≠	'X>2'	4 à

Press ENTER to accept the third term. You will be prompted for another term.

At this fourth prompt, press **ENTER** to terminate the entry, and the result will be calculated (display assumes PWISE was executed from the interactive menus):

The result can be viewed in the EquationWriter, copied to the stack, or printed on an IR printer. When you have finished viewing the result, press **UP** to return to the Function Library menu, **MATIN** to return to the Main menu, or **ATIN** to quit the Calculus Pac. Example 4: Define the piecewise function $f(x) = \begin{cases} \frac{x}{(x-2)(x-3)} & x \neq 2,3\\ 1 & x = 2,3 \end{cases}$

This will require three terms.

The first term consists of the expression 1 and the region 'X==2'. Enter this information until your screen appears as follows:

{ HOME SPARCOM CALCUD }	ALG PRG
Enter term or EN → expression reg	ITER:
(eqn eqn	5
1 'X==2' == ≠ < >	é è

Press ENTER to accept the first term. You will be prompted for another term.

The second term consists of the expression 1 and the region 'X==3'. Enter this information until your screen appears as follows.

{ HOM	E SPAP		CALCUD	ALC }	S PRG	
Enter term or ENTER:						
1 'X==3' == ≠ < > ≠ ≠						

Press ENTER to accept the second term. You will be prompted for another term.

The third term consists of the expression $'X/((X-2)^*(X-3))'$ and the region $'X \neq 2'$. Enter this information until your screen appears as follows.

{ HOME SPARCOM CALCUD }	ALG PRG
Enter term or EN → expression reg	TER:
(eqn eqn	>
((X-2)*(X-3))' == ≠ < > >	X≠Z

Press ENTER to accept the third term. You will be prompted for another term.

At this fourth prompt, press **ENER** to terminate the entry, and the result will be calculated (display assumes PWISE was executed from the interactive menus):

The result can be viewed in the EquationWriter, copied to the stack, or printed on an IR printer. When you have finished viewing the result, press **UP** to return to the Function Library menu, **MATIN** to return to the Main menu, or **ATIN** to quit the Calculus Pac.

Index

Special Characters

+187-188* 189 /1902 191 ſ192 2D Graphics Environment 104 accessing 95 centering the graph 107 coordinate display 107, 128 function analysis operations 108 jumping to any value 107 operations 105 tagging the graph 109 tracing an equation 108 using 104 zoom operations 106 **3D Graphics Environment 126** background 116 controlling the resolution 117 demonstrations 113 display ranges 117 display volume 117 divide-by-depth method 117 eve point 117 hidden line removal 118 multiple graphs 118 operations 126 tracing an equation 127 using 126 variable domains 117

viewing box 128 xy-plane projection 128

Α

ABS 180 ACOT 81 ACOTH 82 ACSC 81 ACSCH 82 alpha lock 21 application card environmental limits 205 installing 10 removing 11 service 204 shipping 205 ASEC 81 ASECH 82

С

centering the graph 107 changing the font size 19 changing units 56 clearing the command line 35, 49 COLCT 69 Constant Library 55 copying constants to stack 56 operations 56 printing constants 56 using the search mode in 56 viewing a constant 56
conventions manual 10 coordinate display 107, 128 coordinate modes 181 Coords 181 copying data from stack 22 COT 81 COTH 82 CROSS 178 cross product 178 CSC 81 CSCH 82 cubic splines 26, 80 CURL 183

D

DEFIN 91 definitions hyperbolic 61 trigonometric 61 vector 64 DELTA 75 delta functions 75 demonstrations (3D) 113 **DIFEO** menu accessing 162 operations 162 differential equations Euler's Method 163, 165, 166 Runge-Kutta Method 167 directory CALCUD 13 HOME 13 SPARCOM 13, 90, 91 **DIV 182** divergence 182 DOT 179 dot product 179 **DRAW3 130**

Ε

editing text 21 ellipsis, meaning of 20 EMID 165 EMOD 166 enhanced Plot menu 97

accessing 95 operations 97 FO contents of 108, 109, 116 storing equation 137 storing x-component 138 storing v-component 139 storing z-component 140 **ERASE 131** erasing PICT 131 **EULER 163** Euler's Method midpoint 165 modified 166 standard 163 **EVAL 196** EXPAN 69 eye point (3D) 132 **EYE3 132**

F

fitting cubic splines 26, 80 many points 27, 78 one point/slope 25, 79 polynomial 27, 78 two points/slopes 26, 80 flags system 13 user 13 font size changing 19 flag controlling 13 **FUNC3 133** function analysis menu operations 109 **Function Library 23** menu items 24 operations 24 **Function Toolkit 67** DELTA 75 hyperbolic functions 82 LOGA 76 operations 68 PINTR 78 PROOT 71 PTSLP 79

216 Index

PWISE 73 **OPWR 74 ROOTP 72** SIMPL 69 SPLIN 80 trigonometric functions 81 TYLRA 70 functions analysis of 108 delta 75 drawing (3D) 130 hyperbolic 61, 82 limit analysis 50 logarithm, any base 76 piecewise 28, 73, 207, 208 rational power 74 slope field 168 Taylor expansion 31, 70 trigonometric 61, 81

G

global variables Coords 181 Lattice 168 PICT, see PICT PPAR, see PPAR PPAR3, see PPAR3 **USRINTEG 90, 91** gradient 181 Graphics environments 2D see 2D Graphics Environment 3D 126 graphs, see pictures **GRD 181** Greek alphabet 59 GRF2, see 2D Graphics Environment GRF3, see 3D Graphics Environment

Н

hidden line removal 118 hyperbolics definitions 61 pictures 62

I

IFTE 207 INDEF 90 input screens 21 clearing the command line 35. installing an application card 10 **Integral Tables 39** choosing a section 41 menu items 40 operations 40 solving an integral 42 definite or indefinite 42 entering constants 43 entering limits 43 viewing the result 44 storing user-defined integrals 45, 90, 91 using the search mode in 41 viewing in EquationWriter 41 integration definite 91 indefinite 90 lower sum 34, 85 midpoint sum 34, 87 Simpson's Rule 34, 89 trapezoidal method 34, 88 upper sum 34, 86 Integration Analysis 33, 36 operations 34 techniques 34 Integration Toolkit 83 **DEFIN 91** INDEF 90 LEFT 85 MIDPT 87 operations 84 **RIGHT 86** SIMPS 89 TRAPZ 88 Interactive Stack 22 interpolating polynomial 27, 78

J

jumping to any value 107

L

LAPL 184 Laplacian 184 Lattice 168 LEFT 85 left rectangles 34, 85 Library Menu 12 operations 12 Limit Analysis 47 Continuous Mode 49 menu items 48 of functions 50 of recursion relations 53 of sequences 51 of series 52 operations 48 Single-Step Mode 49 loading data from stack 22 LOGA 76 logarithm, any base 76 lower sum 85

М

Main Menu 17 menu items 18 operations 18 manual conventions 10 memory free 13 requirements 13 menus DIFEQ, see DIFEQ menu Enhanced Plot 97 function analysis 108 Function Library 24 **Integral Tables 40** Library 12 Limit Analysis 48 Main 18 PLOT2, see PLOT2 menu PLOT3 EQN 121 PLOT3 PTYPE 121 PLOT3 RNG 123 PLOT3 VAR 124 PLOT3, see PLOT3 menu **Reference Data 58** zoom 106

midpoint rectangles 34, 87 midpoint sum 87 MIDPT 87 moving around the screen 19 multiple 3D graphs 118

Ν

names, see global variables NEG 199 norm of a vector 180 →NUM 198

Ρ

PCURV3 134 PDIM 135 PICT 106 as viewing plane 117 copying to stack 127 dimensioning 135 erasing 131 pictures hyperbolic 62 trigonometric 62 piecewise functions 28, 73 definition of 207 entry rules 208 examples of 209 PINTR 78 **PKEY 95** plot type (3D) **FUNC3 133 PCURV3 134 PSURF3 136** PLOT2 menu accessing 95, 102 operations 103 status message 102 PLOT3 menu accessing 119 EQN menu 121 operations 120 PTYPE menu 121 RNG menu 123 status message 97, 119 VAR menu 124 Plotting Toolkit 93

DRAW3 130 EMID 165 EMOD 166 enhanced Plot menu, see enhanced Plot menu **ERASE 131 EULER 163 EYE3 132 FUNC3 133** GRF2, see 2D Graphics Environment GRF3, see 3D Graphics Environment operations 94 **PCURV3 134 PDIM 135 PSURF3 136** RK4 167 SLPFD 168 **STEO 137 STOX 138 STOY 139 STOZ 140 TDOM 141 TRES 142 TVAR 143 UDOM 144 URES 145 UVAR 146 VBOX 147 VDOM 148 VRES 149 VVAR 150 XDOM 151 XRES 152 XRNG3 153 XVAR 154** XYPRJ 155 **YDOM 156 YRES 157 YRNG3 158 YVAR 159 ZRNG3 160** point-slope fitting 25, 26, 79, 80 polynomials building 29, 72 interpolating 27, 78 solving 30, 71 PPAR

contents of 110 PPAR3 128 contents of 128 PROOT 71 PSURF3 136 PTSLP 79 PWISE 73

Q

→Q 197 QPWR 74

R

RAM, see memory rational power functions 74 recurrence relations 53 Reference Data 57 Greek alphabet 59 menu items 58 operations 58 SI prefixes 60 trig relations 63 trig/hyp definitions 61 trig/hyp pictures 62 vector formulas 64 relations trigonometric 63 vector 64 removing an application card 11 Result Screen operations 32, 38, 44 Riemann sums lower 34, 85 midpoint 34, 87 upper 34, 86 **RIGHT 86** right rectangles 34, 86 RK4 167 ROM card, see application card root-finding 30, 71 **ROOTP 72** Runge-Kutta Method 167

S

Search Mode 20

SEC 81 SECH 82 sequences 51 series 52 SI prefixes 60 SIMPL 69, 176 SIMPS 89 Simpson's Rule 34, 89 slope field 168 lattice 168 **SLPFD 168** Sparcom address 203 **FAX 203** how to contact 203 telephone 203 SPLIN 80 splines, cubic 26, 80 stack, loading data from 22 **STEQ 137** storing an equation 137, 138, 139, 140 **STOX 138 STOY 139 STOZ 140** $SV \rightarrow 193$ →SV2 194 →SV3 195 symbolic simplification 69, 176 symbolic vectors 173 system flags 13

Т

tagging the graph 109 Taylor expansion 31, 70 TDOM 141 technical support 203 text editing 21 operations 21 Toolkit Function 67 Integration 83 Plotting 93 Vector 172 tracing an equation 2D 108 3D 127 trapezoidal method 34, 88 TRAPZ 88 TRES 142 trigonometry definitions 61 pictures 62 relations 63 tutorial (3D) 113 TVAR 143 TYLRA 70

U

UDOM 144 unit vectors 177 units changing 56 flag controlling 13 upper sum 86 **URES 145** user flags flag 57 (font) 13 flag 58 (hidden) 13, 118 flag 61 (units) 13 user-defined integrals storing 45, 90, 91 user-keys plotting 95 vector 174 **USRINTEG 90, 91 UVAR 146**

V

 $V \rightarrow 193$ V + 187 V - 188 V * 189 V / 190 V 10P 185 $\rightarrow V2 194$ V 2OP 186 $\rightarrow V3 195$ VABS 180variables, see global variables VBOX 147 VCROS 178VDER 191

VDOM 148 VDOT 179 Vector Toolkit 172 **CURL 183 DIV 182 GRD 181 LAPL 184** operations 172 SIMPL 176 $SV \rightarrow 193$ →SV2 194 →SV3 195 V+187 V - 188V* 189 V/190 V1OP 185 V2OP 186 **VABS 180 VCROS 178 VDER 191 VDOT 179 VEVAL 196 VINT 192 VNEG 199** V→NUM 198 V→Q 197 **VUNIT 177** vectors addition 187 assembling 194, 195 binary operation 186 coordinate variables 181 cross product 178 derivative 191 disassembling 193 division 190 dot product 179 evaluate to number 198 evaluating 196 formulas 64 integral 192 multiplication 189 negating 199 normalizing 177 subtraction 188 symbolic 173 to auotient 197 unary operation 185

unit vectors 177 vector length 180 vector norm 180 VEVAL 196 viewing box 128 viewing items too wide for the display 20 VINT 192 VKEY 174 VNEG 199 V \rightarrow NUM 198 V \rightarrow Q 197 VRES 149 VUNIT 177 VVAR 150

W

warranty 204

Х

x-axis display range (3D) 153 XDOM 151 XRES 152 XRNG3 153 XVAR 154 xy-plane projection 128 XYPRJ 155

Y

y-axis display range (3D) 158 YDOM 156 YRES 157 YRNG3 158 YVAR 159

Ζ

z-axis display range (3D) 160 zoom menu operations 106 zooming 106 ZRNG3 160

222 Index

Sparcom Corporation 897 NW Grant Avenue Corvallis, OR 97330

To order any **Sparcom** product that your retailer does not carry, call: (503) 757-8416 or FAX (503) 753-7821

ton al

Printed in USA © 9/91