
The thought-by-thought development of RPSSL
by Joe Horn

I'm going to need the list of game objects (rock, paper, etc)

throughout the entire program, so let's put it on the stack right

now, so that whenever we need a copy, it'll be floating on the stack:

 { "ROCK" "PAPER" "SCISSORS" "SPOCK" "LIZARD" }

That's kind of bulky, so from now on in the stack diagram I'll refer

to the list as just {L}. The stack diagram will be shown on the left
side of the page, with the program commands to its right in red.

Next I want to make a custom menu from this list. But if I just did

TMENU now, I'd lose my only copy of {L}. So I make another copy:

 {L} {L} DUP

Now I can do the TMENU. But I want a sixth button that says EXIT, so

I add it to the end of {L}.

 {L} {L} "EXIT" "EXIT"
 {L} {L "EXIT"} +
 {L} TMENU

I want to start the game with a little prompt message, the custom

menu showing, and an otherwise clear screen. CLLCD clears the

screen, "PRESS ONE!" would be a sufficient prompt message, and -1

WAIT does two things: it displays the current menu (in this case, our

custom menu), and it pauses until a key is pressed, then returns the

keycode and resumes program execution. The game should repeat until

EXIT is pressed, so start the main loop here.

 {L} CLLCD
 {L} "PRESS ONE!" "PRESS ONE!"
 {L} 1 DISP
 {L} 11.1+ WHILE -1 WAIT

Keycodes for the menu keys are 11.1, 12.1, 13.1 and so on. To turn

these into 1, 2, 3 and so on, we can just subtract 10.1. That yields

the number of the object that the user picked, which I'll call X.

It'll be 6 if they pressed EXIT.

 {L} X 10.1 -

Now I want to exit the game if EXIT was pressed.

 {L} X X DUP
 {L} X 1/0 5 ‰
 {L} X REPEAT

At this point, I know that X is between 1 and 5, and stands for the

game object that the user picked. Let's display it like this:

"YOU: ROCK" or "YOU: PAPER", etc. All I have to do is get object X

from {L}, append it to "YOU: ", and display it.

 {L} X {L} X DUP2
 {L} X "X" GET
 {L} X "X" "YOU: " "YOU: "
 {L} X "YOU: " "X" SWAP
 {L} X "YOU: X" +
 {L} X 1 DISP

Now I generate the HP's turn, which I'll call Y.

 {L} X 0..1 RAND
 {L} X Y 5 * CEIL

Let's display it like this: "ME: ROCK" or "ME: PAPER", etc. I need

to get object Y from {L}, append it to "ME: ", and display it.

 {L} X Y {L} 3 PICK
 {L} X Y {L} Y OVER
 {L} X Y "Y" GET
 {L} X Y "Y" " ME: " " ME: "
 {L} X Y " ME: " "Y" SWAP
 {L} X Y " ME: Y" +
 {L} X Y 2 DISP

If X and Y are the same, then it was a tie. In that case, we can

throw away X and Y, and say that it was a tie.

 {L} X Y X Y IF DUP2
 {L} X Y T/F SAME
 {L} X Y THEN
 {L} "TIE!" DROP2 "TIE!"

Leave the message string on the stack; don't show it yet. If it

wasn't a tie, then figure out who won. This is done by subtracting

X-Y, taking it MOD 5 (to model it around a circle; see diagram

elsewhere), and then check to see if it's even (X wins) or odd (Y

wins).

 {L} X-Y ELSE -
 {L} MOD(X-Y,5) 5 MOD
 {L} MOD(MOD(X-Y,5),2) IF 2 MOD
 {L} "YOU" THEN "YOU"
 {L} "I" ELSE "I" END
 {L} "? WIN!" " WIN!" + END

At this point, "YOU WIN!" or "I WIN!" or "TIE!" is on the stack.

Display it.

 {L} 4 DISP

And the game is done. Go back to the beginning of the main loop. If

the EXIT key was pressed, then the program jumps down to here:

 {L} 0 END

Time to clean up the stack and restore the previous menu.

 DROP2 0 TMENU

And the program is finished!

