
ALG48

An algebra library for the HP48

Version 4.0

Claude-Nicolas Fiechter

Mika Heiskanen

c 1994 - 1997

Contents

1 Acknowledgments, Copyright & Disclaimer of Warranty 2

2 Overview 2

3 Installation 4

3.1 Platforms and ports . 4

3.2 Installation procedure . 5

4 Commands 5

4.1 Generalities . 5

4.2 Algebraic expressions simpli�cation . 6

4.3 Output format for polynomials . 8

4.4 General algebraic expressions simpli�cation . 8

4.5 Automatic simpli�cation ag . 9

4.6 Partial fraction expansion . 9

4.7 Rational functions integration . 10

4.8 Symbolic matrix manipulation . 11

4.9 Nonlinear equations and Gr�obner bases commands 12

4.10 Verbose mode ag . 15

4.11 Calculating with fractions . 15

4.12 Algebraic operations on modular polynomials . 15

4.13 Unlimited precision integer arithmetic . 16

4.14 Advanced algebraic operations on unlimited precision integers 17

4.15 Modular arithmetic on unlimited precision integers 18

4.16 Performances . 18

4.17 Remarks . 19

5 History of changes 20

6 Contact 21

A Simpli�cation Rules for ASIM 22

B Command Reference 26

1

1 Acknowledgments, Copyright & Disclaimer of Warranty

All the �les of the ALG48 library are copyrighted c by Claude-Nicolas Fiechter and Mika Heiskanen.

ALG48 is distributed in the hope that it will be useful, but the copyright holders provide the
program \as is" without warranty of any kind, either expressed or implied, including,

but not limited to, the impliedwarranties of merchandability and �tness for a particular

purpose. In no event will the copyright holders be liable to you for damages, including

any general, special, incidental or consequential damages arising out of the use or

inability to use the program.

This version of ALG48 is a GiftWare release. You may use it as long as you like, but only for
non-commercial purposes and only as a private person. Permission to copy the whole, unmodi�ed,
ALG48 library is granted provided that the copies are not made or distributed for resale (excepting
nominal copying fees) and provided that you conspicuously and appropriately include on each copy
this copyright notice and disclaimer of warranty.

Special thanks to Dominique Rodriguez for his LATEX version of the documentation for ALG48 v2.1,
on which this document is based, and to Joe Horn for his many useful comments, suggestions and
detailed bug reports.

2 Overview

ALG48 is a comprehensive symbolic math package for the HP48. It includes commands for algebraic
simpli�cation, factorization, partial fraction expansion, symbolic integration, symbolic matrices ma-
nipulation, and for solving systems of nonlinear polynomial equations.

ALG48 di�ers from other math packages for the HP48 in two important aspects:

1. ALG48 can manipulate, simplify, and factorize multivariate polynomials and functions, i.e.,
algebraic expressions with several variables.

2. ALG48 only does exact calculation, using unlimited precision integers and advanced computer
algebra algorithms (as opposed to doing approximate calculation using oating point numbers
and numerical algorithms). This not only means you will not get wrong or approximate results
(2:00001, 4:9999 and the like), but also that all and only exact simpli�cations are performed.

Below are some examples of ALG48 operations. The time taken for the commands on a HP48GX (with
60K free) are given in brackets.

� Simpli�cation of multivariate polynomials and rational functions:

1�
1� y

x+ y

1� x

x+ y

y2 � x

1 +
x

y � x

(
xy

y � x
� x)

RSIM [1.8s]) inv(x2 + xy + y2)

2

� including polynomials and rational functions with non-rational subexpressions:

cos(a) sin(a) � cos(a)� sin(a) + 1

cos(a) sin(a) + cos(a)� sin(a)� 1
RSIM [0.9s]) sin(a)� 1

sin(a) + 1

� Complete factorization of polynomials and rational functions:

75x9 � 435x8 + 852x7 � 576x6 � 663x5 + 3027x4� 4911x3+ 3402x2 � 735x

FCTR [4.9s])
3x � (x2 � 3x+ 1) � (x4 + x� 5) � (5x� 7)2

� including polynomials and rational functions in several variables:

3x5y + 9x4y2 � 3x3y2 + 21x3y � 2x3 + x2y2 � 6x2y + 5x2

+3xy3 + 17xy � 14x� y3 + 7y2 � 5y + 35

FCTR [11.2s])
(x2 + 3xy � y + 7) � (3x3y � 2x+ y2 + 5)

� Simpli�cation of non-rational expressions:
p
x3 + x2 � x� 1p

12
p
5 + 49 � (x+ 1)

ASIM [4.3s])
p
x� 1

3
p
5 + 2

� including exponential functions:

x exp(3 ln(x) + ln(x2))� 1

ln
�p

exp(x2 � 1)
� ASIM [1.8s]) 2x4 + 2x2 + 2

� and trigonometric functions:

cos(asin(sin(x)� cos(x)))2

ln(sin(x) cos(x) tan(x))
ASIM [8.6s]) sin(x) cos(x)

ln(sin(x))

� Partial fraction expansion along one or several variables:

x3y2 � 3x3y + 3x3 � x2y2 + 2x2y � 3x2 � xy4 + 5xy3 � 8xy2 + 5xy � y3 + 3y2 � 2y

x2y2 � 3x2y + 2x2 � xy3 + 2xy2 + xy � 2x+ y3 � 3y2 + 2y

PF [8.3s])
y + x+

x

y � 2
� x

y � 1
+

y

x� y
+

y

x� 1

� Rational function integration:

27x7 � 42x6 � 106x5 � 47x4 + 224x3� 147x2 + 313x+ 138

15x8 � 15x7 + 15x6 � 60x5 + 90x4 � 105x3+ 45x2 + 60x� 45

x RINT [8.8s])
9x� 11

3x2 � 6x+ 3
+
p
2 � atan

�
x+ 1p

2

�
+
3

5
ln(x3 + x+ 1)

3

� Symbolic vector and matrix operations:

{ Inverse0
@ 3 2x2 1

4x 2x3 2x
2x2 �1 2x2

1
A AINV [5.5s])

0
@ 2x4 + 1 (�4x4 � 1)=(2x) x2

�2x2 2x �1
�2x4 � 2 (4x4 + 3)=(2x) �x2

1
A

{ Determinant0
BB@

1 t t t

1 k t t

1 t k t

1 t t k

1
CCA MDET [1.6s]) k3 � 3k2t+ 3kt2 � t3 FCTR [1.8s]) (k � t)3

{ Addition, Subtraction, Negation, Multiplication, Division, Exponentiation, Transpose,
. . .

� Solution of systems of linear equations (Ax = b) with symbolic coe�cients

b :

0
@ 1

2
3

1
A A :

0
@ 1� t 2 �4

3=2� t 3 �5
5=2 + t 5 �7

1
A ADIV [3.3s]) x :

0
@ inv(�2t)

(7t+ 1)=(4t)
3=4

1
A

� Solution of systems of nonlinear polynomial equations using Gr�obner bases

2x2 + xy � y + 1 = 0
�3xy � x+ 2y2 � 2 = 0

2x2 � 3xy2 + 2y3 � 3y + 1 = 0

9=
; fx yg GSOLVE [4.9s])

�
x

y � 1
;

�
2x� 6y � 5
14y2 + 21y + 9

Additional features include:

� Provides arithmetic operations on unlimited-size integer numbers, including modular arith-
metic, integer factorization, and primality testing.

� Can be used to easily calculate with fractions.

� Can perform algebraic operations over �nite �elds (modular polynomials).

� Can handle polynomials and rational functions of arbitrary degrees and with arbitrary many
variables (limited only by your HP48's memory and by your patience).

� Entirely written in system-RPL and machine language.

3 Installation

3.1 Platforms and ports

ALG48 version 4.0 takes approximately 49Kb of memory and should work in any port of a HP48GX

or SX. Because of its size ALG48 version 4.0 cannot be use on a HP48G. The library was developed

4

on a HP48GX version P and tested in ports 0, 1 and 2. Previous versions were reported to also work
properly on the HP48SX.

ALG48 can safely be run from a covered port (2-33) of a HP48GX and uses a special technique to
avoid the usual slowdown associated with running a library from a covered port. The downside of
this special technique, however, is that ALG48 cannot be run from a covered port if the RAM card

in Card Slot 1 is merged with user memory. If you try, rather than risking to crash your calculator,
ALG48 will generate a \Missing Library" error. If you want to keep your card 1 merged you have
to put ALG48 in port 0.

Note: If you have ALG48 in a covered port and want to use the special functions library SpecFun or
any other library that uses ALG48 internal routines, you must put that library in the same port as
ALG48 or in port 0. Also, if you are running the library from a covered port, only use the provided
user commands and do not try to access internal routines of the library directly, since this might
crash your calculator.

3.2 Installation procedure

ALG48 is a regular auto-attaching library (library number 909). To install it on your HP48 download
the �le alg48.lib onto your calculator (in binary mode), put the content of the created variable on
the stack, store it in the port of your choice (e.g., 'ALG48.LIB' DUP RCL SWAP PURGE 0 STO), and
power-cycle the calculator.

The basic operation commands de�ned in ALG48 (AADD, ASUB, ANEG, AMUL, ADIV, AINV, APOW, see
Section 4) are intended to be assigned to the corresponding keys (+ - +/- * / 1/x ^) of the
calculator. To do this you can type:

fS APOW 45.1 AINV 46.1 ANEG 52.1 ADIV 65.1 AMUL 75.1 ASUB 85.1 AADD 95.1g STOKEYS

Thereafter, whenever the calculator is in user mode, pressing one of these keys will call the cor-
responding ALG48 command, and, if the arguments provided do not match those handled by the
library (see the Command Reference in appendix) the standard command will be called. Therefore
you can stay in user mode and still perform \regular" operations. In addition, these commands
have algebraic aliases, which means that you can stay in user mode when typing a symbolic expres-
sion (in what HP calls algebraic-entry mode) and still get the usual symbols (+ - +/- * / 1/x ^)

when pressing the corresponding keys. Note, however, that in program-entry mode you will get the
ALG48 command names (APOW, AINV, etc.), and that ANEG will not behave exactly like the regular
+/- operation. The program AKEYS, distributed with the library, performs a more sophisticated key
assignment that solves these problems (see the �le AKEYS.TXT for a detailed explanation).

4 Commands

4.1 Generalities

To ensure exact results ALG48 only works with integer and rational numbers and produces a \Bad
Argument Type" error if it �nds a fractional number in the input. If the expressions you have contain
fractional numbers, you must convert them �rst into rational numbers by using the command ->Q or
->Qpi of the HP48, or by using the program ->QpiRac c by A. Coulom. An advantage of ->QpiRac

5

is that it will also convert real arrays into symbolic matrices and complex numbers in (a; b) form
into the a+ bi form, appropriate for ALG48.

The commands in ALG48 can be divided into eight groups, according to the kind of operations they
perform:

1. Simpli�cation commands: RSIM FCTR ASIM RORD RAT->

They are used to simplify symbolic expressions or all the elements of a symbolic matrix or
vector.

2. Basic operations commands: AADD ASUB ANEG AMUL ADIV AINV APOW

They are used to do basic calculation (+ - +/- * / 1/x ^) on several kind of objects:

� Symbolic matrices and vectors;

� Symbolic expressions;

� Fractions;

� Modular polynomials;

� Unlimited precision integers.

3. Gr�obner bases commands GBASIS GSIMP GSOLVE

They are used to solve systems of nonlinear polynomial equations.

4. Symbolic matrix commands: MDET MLU MTRN MIDN

Perform speci�c operations on symbolic matrices.

5. Calculus commands: PF RINT

Perform partial fraction expansion and integration on symbolic rational functions.

6. Algebraic commands: GCD LCM

Perform speci�c operations on polynomials or unlimited precision integers.

7. Modular arithmetic: MOD+ MOD- MOD* MOD/ MODPOW MODINV

Perform modular arithmetic operations on unlimited precision integers.

8. Prime number operations: PRIM? PRIM+ PRIM-

Perform operations related to prime numbers on unlimited precision integers.

We describe below how to use these groups of commands to manipulate di�erent kinds of objects.
The CommandReference in appendix gives a brief de�nition and the stack diagramof each command.

4.2 Algebraic expressions simpli�cation

ALG48 provides two powerful commands for simplifying multivariate polynomials and rational func-
tions. These commands will work on any algebraic expressions by treating them as the quotient of
two polynomials in several \variables", which can actually be non-rational subexpressions (see the
second example in Section 2).

6

RSIM { Simpli�es a symbolic expression as a rational function and returns it in (ex-
panded) canonical form;

FCTR { Simpli�es a symbolic expression as a rational function and factorizes it into a
product of irreducible factors.

The simpli�cation consists of two main steps

1. Multiplying out all products of polynomials and collecting the terms of same degree for the
numerator and denominator polynomials;

2. Simpli�cation of the rational function by the multivariate polynomial greatest common divisor
(GCD) of the the numerator and denominator.

Depending on the type of the simpli�ed rational function, RSIM returns it in one of the following
forms:

� If the denominator of the rational function is a constant, then the result is returned as a
polynomial with possibly rational coe�cients;

� If the numerator of the rational function is a constant, then the result is returned as the inverse
of a polynomial with possibly rational coe�cients;

� If both the numerator and the denominator of the rational function contain variables, then
the result is returned as the ratio of two polynomial with integer coe�cients.

Similarly, FCTR returns the simpli�ed rational function as either

� The product of its factors (which are all polynomials with integer coe�cients) multiplied by a
possibly rational coe�cient;

� The inverse of such a product;

� The ratio of two such products.

FCTR computes the true factorization of a polynomial over the integers (or, equivalently, over the
�eld of rational numbers), and not approximate roots over the real or complex �eld as computed
by a root �nding program (like the command ROOT or PROOT of the HP48). Polynomials of arbitrary
degree can be irreducible over the integer, and a factorization might therefore entail high degree
polynomials. For instance:

x20 � 2x15 + 2x10 � x5 � 2 FCTR [3.6s]) (x10 � x5 � 1) � (x10 � x5 + 2)

ALG48 version 4.0 uses Berlekamp p-adic factorization algorithm and can compute the complete fac-
torization of virtually any polynomial (up to degree 256). For more on RSIM and FCTR performances
see Section 4.16.

ALG48 also provides the command RAT->, which operates like RSIM, but returns the numerator and
denominator of the simpli�ed rational function as two separated polynomials. In addition, the
commands GCD and LCM respectively compute the greatest common divisor and the least common
multiple of two polynomials. These two functions do not accept rational functions as input, since
the GCD and LCM are not well-de�ned notions in this case.

All the simpli�cation commands produce a \Infinite Result" error if the denominator of the
simpli�ed expression is zero.

7

4.3 Output format for polynomials

All the ALG48 commands output polynomials in expanded canonical form. In the polynomials the
terms are arranged into descending order of their degrees, and the \variables" in the terms are
arranged in lexicographic order, with the true variables (global and local names) �rst, followed by
the non-rational subexpressions. E.g.,

0ax2y3 exp(x) exp(y) + xy2 � 2 exp(x) + 30:

Sometimes, however, this output format may not be the most appropriate. In some cases a di�erent
order for the variables or a \recursive" format, where one or several variables are considered \main"
variables and the others are treated as coe�cient, may be preferable. The command RORD in ALG48

let you simplify and \re-order" polynomials in such ways.

The command RORD takes two arguments, viz., the symbolic expression to simplify and a main
variable or list of main variables. The output polynomial will be expanded with respect to the main
variable(s), while the remaining variables will be treated as coe�cients. In addition, the order of the
variables in the list will be used in the output. The following examples illustrate di�erent possible
outputs of RORD on a particular polynomial.

2ax2 � ay + bx2y + bx2 + x2y + 3y

x RORD) (2a+ by + b+ y)x2 � (ay � 3y)

fx yg RORD) (b+ 1)x2y + (2a+ b)x2 � (a� 3)y

fy xg RORD) (b+ 1)yx2 � (a � 3)y + (2a+ b)x2

fx y a bg RORD) x2yb + x2y + 2x2a+ x2b� ya + 3y

4.4 General algebraic expressions simpli�cation

RSIM and FCTR leave any non-rational (sub)expressions unchanged and treat i (the complex unit) like
any other variable. To simplify non-rational algebraic expressions (like square- and yth-root, expo-
nentials, logarithmic, trigonometric and hyperbolic functions) and expressions that involve complex
arguments ALG48 provides the command ASIM.

Unlike the simpli�cation of rational expressions, the simpli�cation of general algebraic expressions
is somewhat subjective and heuristic in nature. No algorithm will do it optimally in all cases. ASIM
does the following:

� Recursively applies RSIM to every \rational" subexpression

� Simultaneously apply rules to simplify non-rational expressions

� Expand the exponentials, logarithms, etc.

� Simplify the resulting expression using RSIM

� Merge back the remaining exponentials, logarithms, etc.

In addition, ASIM substitutes the exact value of the trigonometric functions for arguments that are
integer multiples of �, �=2, and �=4. A table of the rules that ASIM uses to simplify non-rational
expressions is given in appendix.

8

ASIM takes the natural \principal solution" approach to simpli�cation, that is, it performs simpli�-
cation that hold in the \principal" case, but that are not necessarily true in all cases. For instance,
ASIM simpli�es

p
x2 into x, even though, strictly speaking, this is valid only when x is positive (the

\principal" case).

4.5 Automatic simpli�cation ag

ALG48 uses the user ag number 5 as an automatic simpli�cation ag. When the ag is set the
result of any basic operation commands is automatically simpli�ed, as by an application of RSIM.
For instance:

x� 1

2
<enter> 2x AMUL)

(
02x2 � x0 when the automatic simpli�cation ag is set

0(x� 1
2)(2x)

0 when the ag is clear

Since the simpli�cation of rational functions can be time consuming (see 4.16), it is sometimes
preferable to do a series of operations without simplifying the intermediate results (i.e., with the
automatic simpli�cation ag clear) and then to simplify explicitly the �nal result by using RSIM.

4.6 Partial fraction expansion

The command PF computes the partial fraction expansion of a rational function. By default, if the
rational function contains several variables, PF computes the partial fraction expansion along all the
variables. More precisely, PF �rst computes the partial fraction expansion along the �rst variable
(in the usual lexicographic order) and then, if there is a term whose denominator does not depend
on the �rst variable, expands it along the second variable, and so on, until all the terms have been
expanded as much as possible.

In general, the �nal result will depend on the order in which the expansion along the di�erent
variables is performed. Because of that, PF takes a list of variables as an optional second argument.
This list of variable speci�es along which variables the expansion should be done and the order in
which it should be computed. As an example, consider the rational function given in Section 2,

x3y2 � 3x3y + 3x3 � x2y2 + 2x2y � 3x2 � xy4 + 5xy3 � 8xy2 + 5xy � y3 + 3y2 � 2y

x2y2 � 3x2y + 2x2 � xy3 + 2xy2 + xy � 2x+ y3 � 3y2 + 2y
:

Here is the output of PF, �rst with no optional argument, then with fxg and fy; xg respectively as
optional arguments.

PF) y + x+
x

y � 2
� x

y � 1
+

y

x� y
+

y

x� 1

fxg PF) xy2 � 3xy + 3x+ y3 � 3y2 + 2y

y2 � 3y + 2
+

y

x� y
+

y

x� 1

fy xg PF) x� 1 + y +
y

x� 1
� x

y � x
+

x

y � 2
� x

y � 1

In the �rst case the expansion was done on x �rst and then on y; in the second case the expansion
was done on x alone; and in the third case the expansion was done on y �rst and then on x. Note
in particular that the �rst and third outputs are di�erent (though equal, of course), and not merely
the same fractions in di�erent orders.

9

4.7 Rational functions integration

The command RINT computes the inde�nite integral of rational functions. It takes two arguments:
the expression to integrate and the integration variable. If the expression to integrate contains
non-rational subexpressions that depend on the integration variable or contains irrational numbers
(like

p
2) then RINT produces a "Bad Argument Value" error. Even though it is not explicit in

the output, like any inde�nite integral, the integral returned by RINT is de�ned up to an additive
constant. That is, the general solution for the inde�nite integral is the output of RINT plus an
arbitrary constant.

In general, the inde�nite integral of a rational function will have a rational part and a logarithmic
part. The rational part is a \regular" rational function in the integration variable, and the logarith-
mic part is a sum of logarithms whose arguments are polynomials in the integration variable and
whose coe�cients are constants. E.g.,

505x6 � 884x5 � 2028x4+ 7965x3� 11218x2+ 8771x� 4119

28x7 � 28x6 � 224x5+ 812x4 � 1428x3 + 1484x2 � 840x+ 196

x RINT [6.5s])
15x2 � 39x+ 28

3x3 � 9x2 + 9x� 3
+

19

4
ln(x� 1) +

31

7
ln(x3 + 3x2 � 2x+ 7):

It is always possible to compute the rational part of the integral and RINT uses Horowitz's algorithm
to compute it quickly without computing the partial fraction expansion of the rational function. For
instance,

441x7 + 780x6 � 2861x5 + 4085x4 + 7695x3 + 3713x2 � 43253x+ 24500

9x6 + 6x5 � 65x4 + 20x3 + 135x2� 154x+ 49

x RINT [3.3s])
441x6 + 678x5 � 2412x4� 14472x3+ 18033x2+ 11256x� 12544

18x4 � 12x3 � 72x2 + 108x� 42
:

On the other hand, the coe�cients in the logarithmic part are solutions of potentially high-degree
equations and cannot always be represented analytically (in closed-form). RINT gives an analytical
solution only if the coe�cients are solutions of equations of degree two or less, i.e., if the coe�cients
can be expressed exactly in terms of rational numbers and radicals. Otherwise RINT leaves the
corresponding part of the integral unsolved. For instance, RINT completely solves the following
integral since the it can be given explicitely in terms of radicals and fractions,

1

x2 � 2
x RINT) 1

4

p
2 � ln(x�

p
2)� 1

4

p
2 � ln(x+

p
2):

In the contrary, RINT leaves the following integral unsolved because the solution can only be expressed
in terms of the roots of an equation of degree three,

1

x3 + 2
x RINT) int

�
1

x3 + 2
; x

�
:

When appropriate, to avoid logarithms with complex arguments and coe�cients, RINT uses arctan-
gents in the logarithmic part of the integral. E.g.,

1

x2 + 2
x RINT) 1

2

p
2 � atan

�
xp
2

�
:

10

Because of the limited speed of the calculator, RINT does not use the general Rothstein-Trager
method to compute the logarithmic part of the integral and in some cases will fail to give an analytical
solution when one exists. For instance, RINT fails to solve completely the following integral,

6x7 + 7x6 � 38x5 � 53x4 + 40x3 + 96x2 � 38x� 39

x8 � 10x6 � 8x5 + 23x4 + 42x3 + 11x2 � 10x� 5

x RINT [16.7s])
1

10

p
5 � ln(x�

p
5)� 1

10

p
5 � ln(x+

p
5) + int

�
6x5 + 6x4 � 8x3 � 18x2 + 8x+ 8

x6 � 5x4 � 8x3 � 2x2 + 2x+ 1
; x

�
;

even though the integral of the last term can be given analytically as

(1 +
p
3) ln(x3 �

p
3x2 � (1 +

p
3)x� 1) + (1�

p
3) ln(x3 +

p
3x2 � (1�

p
3)x� 1):

Note however that RINT never introduces unnecessary algebraic extensions to express the integral
and can always solve integral whose logarithmic part only entails logarithms with polynomials of
degree two or less, regardless of the degree of the rational function itself.

4.8 Symbolic matrix manipulation

ALG48 represent (n�m) symbolic matrices by lists of the form

ffa11 : : : a1mgfa21 : : : a2mg : : :fan1 : : : anmgg

where each element aij is either a real number, a variable or a symbolic expression. Similarly,
symbolic vectors [(n� 1) matrices] are represented by lists of the form fa1 : : :ang.
All the symbolic matrix commands of ALG48 check that their arguments are valid symbolic matrices
and will produce a "Bad Argument Type" error otherwise. In addition, the commands that accept
non-square matrices as arguments will also accept symbolic vectors and will return symbolic vectors
when appropriate.

ALG48 provides the following symbolic matrix commands [below, \scalar" denotes a real number, a
variable or a symbolic expression, and I is the identity matrix]:

AADD { Adds two symbolic matrices or vectors, or, given a square matrix A and a scalar
x, computes A+ xI.

ASUB { Subtracts two symbolic matrices or vectors, or, given a square matrix A and a
scalar x, computes A� xI (or xI � A).

ANEG { Negates all the elements of a symbolic matrix or vector.

AMUL { Multiplies two symbolic matrices or vectors, or a scalar with a symbolic matrix
or vector.

ADIV { Multiplies a symbolic matrix, vector or scalar by the inverse of a square symbolic
matrix or scalar; can be used to solve systems of linear equations as shown in
Section 2.

AINV { Computes the inverse of a square symbolic matrix.

11

APOW { Raises a square symbolic matrix to an integer power.

MDET { Computes the determinant of a square symbolic matrix.

MLU { Computes the Crout (LU) decomposition of a square symbolic matrix.

MTRN { Transposes a symbolic matrix or vector.

MIDN { Given an integer number n returns the (n � n) identity symbolic matrix.

The Crout LU decomposition computed by the command MLU combines the lower triangular matrixL
and the upper triangular matrix U in a single square matrix. The command also returns the number
of \pivots" (iterations) completed, which is a lower bound on the rank of the matrix. If the matrix
is invertible then the number is equal to the dimension of the matrix. Both AINV and ADIV produce
a "Infinite Result" error if applied to a non-invertible (singular) matrix.

The result of the basic operation AADD, ASUB, AMUL, and APOW is simpli�ed or not depending on
whether the automatic simpli�cation ag is set (see 4.5), whereas the result of ADIV, AINV, MDET,
and MLU is always simpli�ed. In addition, RSIM, FCTR, and ASIM can be used to simplify all the
elements of a symbolic matrix or vector.

In general the time taken by the matrix manipulation commands increases quickly with the di-
mensions of the matrices involved. Speci�cally, for square n � n matrices, the time taken by the
commands AINV, ADIV, AMUL, APOW, MDET, and MLU is proportional to n3, and the time taken by the
other commands is proportional to n2. ALG48 version 4.0 can nevertheless handle relatively large
matrices in a reasonable amount of time. For instance, ALG48 takes only 3.5s to invert exactly the
following 6� 6 matrix, and about 18s to invert it back.0

BBBBBB@

1 2 0 4 0 1
5 0 4 0 6 3
0 2 5 6 2 �1
0 �1 2 �1 �1 9

�5 3 1 �2 8 0
1 0 �2 1 0 3

1
CCCCCCA

Note also that the time taken by these commands largely depends on whether the elements of the
symbolic matrices are numbers or symbolic expressions, and on the number of variables involved in
the symbolic expressions.

4.9 Nonlinear equations and Gr�obner bases commands

As mentionned in the previous section, ADIV let you easily compute the exact solutions of a system
of linear equations. Solving a system of nonlinear equations is usually much harder. Even a single
univariate equation of degree greater than four cannot in general be explicitely solved in terms
of rational numbers and radicals. It is however possible, using a root �nder program (like the
command ROOT or PROOT of the HP48), to compute good approximate numerical solutions of a
nonlinear univariate equation. We can therefore consider that a system of nonlinear equations is
solved if we have reduced it into an equivalent form in which the roots can be obtained easily with
a root �nder program.

Solving a linear system typically involves \eliminating" unknowns from equations to obtain an
equivalent triangularized system which is then easy to solve. This process is known as Gaussian

12

elimination. Gr�obner bases generalize this approach to solve systems of nonlinear polynomial equa-
tions. The Gr�obner basis of a system of polynomial equations is a set of equations that has the same
solutions as the original system but that is simpler, in a mathematically well-de�ned way, than the
original system.1 For example, consider the following system of nonlinear equations,

x2 + yz = 2

y2 + xz = 3

xy + z2 = 5;

which is represented in ALG48 by a list containing three algebraics. Its Gr�obner basis computed by
the command GBASIS is

361x� 88z7 + 872z5 � 2690z3 + 2375z

361y + 8z7 + 52z5 � 740z3 + 1425z

8z8 � 100z6 + 438z4 � 760z2 + 361;

where the missing right-hand-side of the equations are implicitly understood to be zero. Even though
this new system might look at �rst more complex than the original one, it is actually much easier
to solve because it is triangularized. The last equation depends on z alone, the second equation
depends only on y and z, and the �rst equation depends only on x and z. Thus, using a root �nder
program, you can easily compute the (eight) solutions for z, and then, by backsubstitution, the
corresponding solutions for y and x.

It is well known that the existence and number of solutions of a system of linear equations can be
neatly characterized in terms of the number of variables and independent equations of the system.
There is no such simple characterization for nonlinear systems. In general the Gr�obner basis for
a system of nonlinear equations can have fewer or more equations than the original system. If
there are as many equations as there are variables, and if the equations are sorted according to their
leading term, the basis will often, but not always, be in triangular form suitable for backsubstitution.
Moreover, if the system has no solution then the basis will include a constant and will reduce to 1.
E.g.,

x2 + 4y2 � 17 = 0
2xy � 3y3 + 8 = 0
xy2 � 5xy + 1 = 0

9=
; fx yg GBASIS) 1:

Even though Gr�obner bases are in a sense minimal, they are not unique, and a system of equations
can have several di�erent (though equivalent) bases. The basis depends in particular on the order of
the terms in the polynomials and on the order in which the variables are \eliminated". ALG48 always
uses a lexicographic ordering for the terms (see Section 4.3) and all the Gr�obner commands expect
a list of variables on Stack Level 1 that speci�es the order of the variables. The list of variables also
speci�es which variables are main variables (as opposed to coe�cients) for the output format, like
in the command RORD. For instance, in the example below, x, y and z are the main variables, and c

is treated as a parameter,

cx+ (c + 1)y + z = 1
x+ cy + (c+ 1)z = 2

(c+ 1)x+ y + cz = �1

9=
; fx y zg GBASIS)

8<
:

x+ cz

y � c2z + 1
(c3 + 1)z � (c+ 2):

1A mathematical de�nition of Gr�obner bases is beyond the scope of this document. Interested readers are referred

to, e.g., Gr�obner bases: a computational approach to commutative algebra, Thomas Becker and Volker Weispfenning,

Springer-Verlag, NY, 1993. A more detailed explanation about the Gr�obner commands in ALG48 and a large number

of examples can also be found in the \Grobner" document that is distributed with ALG48.

13

A di�erent and much more complicated basis would have been obtained if the regular lexicographic
order, with c �rst, had been used.

Beside GBASIS, there are two additional Gr�obner commands in ALG48: GSOLVE and GSIMP. The
command GSOLVE computes the Gr�obner basis of a system of polynomial equations and then factors
the basis as much as possible to determine independent sets of solutions. Each set of solutions is
represented by its own set of equations, and the number of independent sets of solutions is return
on Stack Level 1. For instance,

2xy(x + y � 1)3 + 3x2y(x + y � 1)2

x2(x+ y � 1)3 + 3x2y(x + y � 1)2

�
fx yg GSOLVE

returns the real number 3 on Stack Level 1, and the following three systems of equations on Stack
Level 2, 3 and 4, respectively: �

3x� 1
6y � 1

;
�
x+ y � 1 ;

�
x :

This means that the system has three independent sets of solutions: the point x = 1=3; y = 1=6;
the line x = 1 � y; and the line x = 0. Incidentally, the equations in this example are the partial
derivatives, with respect to x and y, of the bivariate function f(x; y) = x2y(x+ y � 1)3. Hence, the
solutions found correspond to the critical points and singularity lines of f .

Section 2 provides an other example of GSOLVE. There the system has two independent sets of
solution, one corresponding to x = 0; y = 1, the other given by the system�

2x� 6y � 5
14y2 + 21y + 9:

Using for instance the command QUAD or PROOT of the HP48 it is easy to determine the two complex
solutions corresponding to that latter system: x = 1

4
+ 9

28

p
7i; y = �3

4
+ 3

28

p
7i and their conjugates.

The command GSIMP computes the Gr�obner basis for a given system of polynomial equations and
then reduces an equation with respect to that system. The equation to reduce is given on Stack
Level 3, the system of equations on Level 2, and the list of variables on Level 1. GSIMP lets you
answer questions of the form what is the value of this equation, given that these side relations hold.
For instance, consider the following problem from the Dutch Mathematics Olympiad of 1991:

Let a, b, c be real numbers such that a+b+c = 3, a2+b2+c2 = 9, and a3+b3+c3 = 24.
Compute a4 + b4 + c4.

With GSIMP you immediatly get the solution.

3: a4 + b4 + c4

2: fa+ b+ c = 3
a2 + b2 + c2 = 9
a3 + b3 + c3 = 24g

1: fa,b,cg

GSIMP [1.7s]) 69:

Note that if we had computed the solutions for a, b, and c using for instance GBASIS or GSOLVE we
would have obtained an irreducible third degree polynomial (with 3 real roots). Hence, computing
the actual values for a, b, c and then substituting them back into a4 + b4 + c4 would have involved
considerably more work than with GSIMP.

14

4.10 Verbose mode ag

Gr�obner bases calculations are complex operations. Even some apparently simple nonlinear systems
can lead to extremely complex bases, with high-degree equations and large coe�cients. Needless to
say, these calculations can be time-consuming, and not all systems can be solved within the memory
and speed limits of the HP48.

ALG48 uses the user ag number 1 as a verbose mode ag. When the ag is set the Gr�obner
commands display some messages on the top three lines of the screen while they execute. The
messages describe the operations that the command is currently performing. This allows the user
to monitor the progresses the calculator is making toward a solution. If it becomes apparent that a
solution cannot be obtained in a reasonable amount of time, the command can be aborted as usual,
by pressing the CANCEL (ON) key.

4.11 Calculating with fractions

ALG48 can be used to easily calculate with fractions, especially if the basic operation commands are
assigned to the corresponding keys of the calculator (see Section 3).

To facilitate the keying of fractions, ADIV and AINV applied to integer arguments return a symbolic
fraction instead of evaluating the result as a real number. Thus, to calculate an expression using
fractions just type the expression in regular RPN, as you would to evaluate it using real numbers.
For instance, to compute 3=4 + 1=6, you just type:

3 <enter> 4 ADIV) 03=40

6 AINV) 01=60

AADD) 011=120

Note: Make sure the automatic simpli�cation ag is set when calculating with fractions, otherwise
the expressions will not be evaluated (see 4.5).

4.12 Algebraic operations on modular polynomials

ALG48 can be used to perform algebraic operations on modular polynomials, i.e., polynomials whose
coe�cients belong to the �nite ring Zn generated by some positive number n, and all the operations
are performed modulo n. Usually, n will be a prime number; in that case Zn is a �nite �eld.

Modular polynomials are represented in ALG48 by regular symbolic expressions with a MOD operation
at the end. E.g.,

`(2*X^2+5*X-1) MOD 13'.

ALG48 uses the \symmetric" representation when it outputs modular polynomials, that is, it uses
coe�cients in the range �bn=2c : : : bn=2c when the modulo is n.

All the basic operations commands AADD, ASUB, ANEG, AMUL, ADIV, AINV, and APOW, as well as the
commands GCD, LCM, and RSIM can be used with modular polynomials. For instance,

(2x� 2) mod 5
(3x� 2) mod 5

AMUL) (x2 � 1) mod 5:

15

When used with modular polynomials ADIV returns both the quotient (on Stack Level 2) and the
remainder of the division (on Stack Level 1). E.g.,

(x2 + 1) mod 5
(3x� 2) mod 5

ADIV) (2x� 2) mod 5
2 mod 5

:

All these commands generate a \Bad Argument Type" error if the expressions are not polynomials,
if the moduli are not positive whole numbers, or if the moduli do not have the same value in all the
arguments.

4.13 Unlimited precision integer arithmetic

Internally ALG48 does all its calculations using unlimited precision integers. These unlimited pre-
cision integers are represented by hexstrings (binary integers) of variable length (not limited to 64
bits), with a sign-magnitude format (one sign nibble and a variable length unsigned magnitude).
For instance, the number 1 is represented by the two-nibble hexstring #01h, whereas the number 264

is represented by the eighteen-nibble hexstring #0100..0h. Negative numbers are identical except
for the sign nibble which is set to F. For instance, the number -1 is represented by the two-nibble
hexstring #F1h and �264 is represented by the eighteen-nibble hexstring #F100..0h. Finally, zero
is represented by the one-nibble hexstring #0h. Note that the two-nibble hexstring #F1h does not

represent the same number as the three-nibble hexstring #0F1h (which represents the number 241).

You can use ALG48 to do unlimited precision integer arithmetic directly by using the basic operation
commands (except AINV) with binary integer arguments (or one binary integer and a real number).
For example

#2 <enter> 65 APOW

computes the exact value of 265. Note, however, that the HP48 will only display the value of the 64
(or whatever your binary word size currently is) lowest-signi�cant bits of long hexstrings. Therefore,
in the example above, the result will be displayed as #0h since the lowest 64 bits are all zeros. To
overcome this problem, ALG48 provides the command Z<->S that converts a variable length hexstring
into a (character) string giving its value in decimal, or vice versa. Thus typing

#2 <enter> 65 APOW Z<->S returns "3689348814711903232"

which is the exact value of 265. As an additional example, the following little user-RPL program
computes the exact factorial of its single real argument, and returns it as a string:

<< #1h 1 ROT FOR i i AMUL NEXT Z<->S >>

Running it with 100 as argument gives

"933262154439441526816992388562667004907159682643816214685
929638952175999932299156089414639761565182862536979208272

23758251185210916864000000000000000000000000"

As a typing short-cut, ZS is an alias name for the Z<->S command.

16

4.14 Advanced algebraic operations on unlimited precision integers

In addition to the basic operation commands, several commands of ALG48 perform advanced alge-
braic computations on unlimited precision integers.

GCD { Greatest common divisor of two integers

LCM { Least common multiple of two integers

PRIM? { Check whether a number is prime

PRIM+ { Returns the next (larger) prime number

PRIM- { Returns the previous (next smaller) prime number

FCTR { Factorization into prime numbers

The integer argument(s) for all these commands, except FCTR, can be given (in any combination)
as (integer) real numbers, unlimited precision binary integers, or strings representing the number
in decimal. Here are some examples of the primality testing commands. The �rst number below is
2127 � 1, which is the 12th Mersenne number, and which is known to be prime.

"170141183460469231731687303715884105727" PRIM? [58s]) 1 (= prime)

"130529377836972488251268578591" PRIM? [8s]) 0 (= not prime)

#1234567890123456d PRIM+ [6s]) #1234567890123481d

#1234567890123456d PRIM- [4s]) #1234567890123439d

Because of its use as a simpli�cation command, FCTR leaves real numbers unchanged and will only
factor integers given as binary integers or as strings. If the number is given as a binary integer FCTR
returns a list with the prime factors. If the number is given as a string, the factors are given in a
symbolic form. For instance

#130529377836972488251268578591d FCTR [34s])
f #2647d #3691d #5113d #11779d #398609d #556517681d g

and
"130529377836972488251268578591" FCTR [34s])

02647 � 3691 � 5113 � 11779 � 398609 � 5565176810

FCTR uses advanced integer factorization algorithms and can factor relatively large numbers. How-
ever no \e�cient" (polynomial-time) algorithm is known for factoring arbitrarily large integers and
it is widely believed that no such algorithm can exist. Thus FCTR will factor completely only rea-
sonably small numbers (up to 20-30 digits) or larger numbers that consist only of small factors. To
avoid running forever, if FCTR does not make any progress after one minute it returns the number
unfactored (or only partially factored). As always, you can also abort the computation by pressing
the CANCEL (ON) key.

In the contrary, the primality testing algorithm (used by PRIM?, PRIM+ and PRIM-) can handle very
large numbers. However the algorithm is randomized and might, with very low probability, say that
a number is prime when it is not (but will never say that a number is not prime when in fact it is).

17

4.15 Modular arithmetic on unlimited precision integers

ALG48 provides six commands speci�cally to perform modular arithmetic on unlimited precision
integers. These commands take three arguments (two operands A and B, and a modulus N), except
MODINV which takes only two arguments (A and N). Here again the arguments can be given as
(integer) real numbers, binary integers, or strings.

MOD+ { (A +B) mod N

MOD- { (A �B) mod N

MOD* { (A �B) mod N

MOD/ { (A �C) mod N , where C is the inverse modulo N of B

MODPOW {
�
AB
�
mod N

MODINV { inverse modulo N of A

If A and N are relatively prime numbers (with A < N), the inverse modulo N of A is the (unique)
number C that satis�es

(A �C) mod N = 1:

If no such inverse exists, i.e., if A and N are not relatively prime, then MODINV returns #0h. Similarly,
MOD/ returns #0h if its second and third arguments are not relatively prime.

4.16 Performances

Algebraic computations, like the simpli�cation, factorization, partial fraction expansion or integra-
tion of rational functions, are complex operations and are generally time-consuming for non-trivial
problems. Therefore, even though ALG48 is written in sysRPL and machine language, any operation
that involves such operations is not instantaneous on the HP48.

ALG48 version 4.0 can nevertheless perform most simpli�cations quite quickly. Section 2 gives some
examples with their timings. [The times given throughout this document were obtained on a HP48GX
with approximately 60Kb of free memory.] Even complex simpli�cations can be handled in a rea-
sonable amount of time. For instance, ALG48 version 4.0 takes only 8s to simplify the relatively large
three-variable rational below.

6x6�126x4y3z+78x4yz2+x4y+x4z+13x3�21x2y4z�21x2y3z2+13x2y2z2+13x2yz3�21xy3z+13xyz2+2xy+2xz+2
9x5+2x4yz�189x3y3z+117x3yz2+3x3�42x2y4z2+26x2y2z3+18x2�63xy3z+39xyz2+4xyz+6

RSIM [8.1s]) 6x3+xy+xz+1
9x2+2xyz+3

:

ALG48 is also very fast at simplifying polynomials (multiplying out the products and collecting the
terms of same degree). For instance, RSIM takes only 1s to simplify the following expression:

(x + 1)12 � (x� 1)12 RSIM [1.1s]) 24x11+ 440x9 + 1584x7 + 1584x5 + 440x3 + 24x:

As a comparison, the program EXCO (Expand & Collect completely), described in HP's Advanced
User's Reference Manual (p.2-20), was not able to obtain the solution in 10 hours. Using extrapola-
tion from the time taken by EXCO to perform simpler binomial expansions, John Stebbins estimated
that it would take EXCO more than 18 days (!) to �nd the solution of this example.

18

The factorization of polynomials is comparatively slow, especially for multivariate problems. Simple
factorizations, however, are performed quite fast. For instance, FCTR takes only slightly more than
2s on the following example:

3x2y + 9x2 � xy3 � 5xy2 � 2xy � 18x+ y4 � y3 + 6y2 � y + 5

FCTR [2.2s])
(3x� y2 + y � 5) � (xy + 3x� y2 � 1):

Even some seemingly complex factorizations can be performed quickly, like the following one, taken
from Mathematica's book, that ALG48 solves in 15s,

4096x8�14336x7y+43008x7+16768x6y2�155904x6y+169344x6�5600x5y3+195552x5y2�635040x5y+296352x5

�1919x4y4�83244x4y3+849366x4y2�1148364x4y+194481x4+700x3y5�9744x3y4�433944x3y3+1629936x3y2

�777924x3y+262x2y6+8568x2y5+15876x2y4�963144x2y3+1166886x2y2+28xy7+1680xy6

+31752xy5+148176xy4�777924xy3+y8+84y7+2646y6+37044y5+194481y4

FCTR [15.2s]) (x� y)4(8x+ y + 21)4:

ALG48 version 4.0 uses Berlekamp p-adic factorization algorithm and, given enough time, can com-
pute the complete factorization of virtually any polynomials (up to degree 256), even if they are
square-free and contain high-degree factors. E.g.,

x40+x30�x20�2x15�x10�2x5�1 FCTR [125s]) (x20�x15+x10�x5�1)�(x20+x15+x10+x5+1);

x18� y18 FCTR [16s]) (x� y)(x+ y)(x2 �xy+ y2)(x2+xy+ y2)(x6�x3y3 + y6)(x6+x3y3 + y6):

Even large multivariate polynomials can be handled in a reasonable amount of time. For instance,
ALG48 can factor the numerator and the denominator of the large three-variable rational above in
about a minute.

6x6�126x4y3z+78x4yz2+x4y+x4z+13x3�21x2y4z�21x2y3z2+13x2y2z2+13x2yz3�21xy3z+13xyz2+2xy+2xz+2

FCTR [59s]) (x3 � 21xy3z + 13xyz2 + 2) � (6x3 + xy + xz + 1);

9x5+2x4yz�189x3y3z+117x3yz2+3x3�42x2y4z2+26x2y2z3+18x2�63xy3z+39xyz2+4xyz+6

FCTR [65s]) (9x2 + 2xyz + 3) � (x3 � 21xy3z + 13xyz2 + 2):

As a �rst approximation, the running time of the simpli�cation and factorization algorithms used
in ALG48 increases exponentially with the number of variables and polynomially (but fast |like n3)
with the maximum total degree n of the polynomials involved. In theory the factorization algorithm
can also take exponential time in the degree of the polynomial, but this is usually not the case in
practice. However, as illustrated by the examples above, the actual time taken by the simpli�cation
and factorization commands varies greatly depending on the properties of the polynomial involved
(e.g., whether the polynomial is square-free or not, whether the factors are all linears, etc.).

4.17 Remarks

Here are a few additional things to note about ALG48's commands.

19

� ASIM is the only command of ALG48 that handles complex arguments directly in their (x; y)
form. All other commands will produce a "Bad Argument Type" error if they �nds such
complex argument in the input. However, complex arguments in the form 0x+ yi0 are handled
properly, with i treated as any other variable.

� If they are given equations as input RSIM and ASIM will simplify both side of the equation
independently. On the other hand, FCTR does not accept equations as input, and produce a
"Bad Argument Type" error in this case.

� Before trying to factor a polynomial or rational function, FCTR blindly simpli�es it into canon-
ical form (expands it completely and collects the terms of same degree). Therefore, it is in
general a good idea if you have a polynomial already partially factored to split it �rst using
the command OBJ-> of the calculator, and then apply FCTR to each term separately.

� Even though ALG48 internally uses unlimited precision integers for all its computations, the
HP48 can only handle real numbers inside symbolics. Thus ALG48 cannot input or output unlim-
ited precision integers from or into algebraic expressions, and will produce a "Bad Argument

Value" error if a number in the input is too big to be represented exactly by a real. For
instance:

'1/2' 65 APOW) '1/3.6894..E19' 1 AAAD) Bad Argument Value

Therefore, if for example you want to do unlimited precision arithmetic with fractions, you
have to handle the numerator and denominator separately as two unlimited precision binary
integers.

5 History of changes

Changes from version 3.0 to 4.0

� The partial fraction expansion command PF, the rational function integration command RINT,
the Gr�obner bases commands GBASIS, GSOLVE, and GSIMP, as well as the polynomial re-ordering
command RORD, were added.

� FCTR was rewritten to use a better and faster factorization algorithm (Berlekamp's p-adic
algorithm).

� The advanced symbolic matrix operations (determinant, inversion, division) have been rewrit-
ten to use better algorithms and much faster code. The command MADJ was replaced by the
command MLU.

� The basic operation commands can now also handle modular polynomials.

� The command MOD^ was renamed MODPOW.

Changes from version 2.1 to 3.0

� The commands ASIM, MOD+, MOD-, MOD*, MOD/, MOD^, MODINV, PRIM?, PRIM+, and PRIM- were
added.

20

� Both the integer and polynomial factorization algorithms used by FCTR have been greatly
improved.

� The conversion from/to real numbers to/from binary integers is now done by ALG48's own
routine. They do not depend any longer on the binary word size, and handle large numbers
correctly.

� Many speed optimizations and minor bug �xes.

Changes from version 1.2 to 2.1

� The command SQFF was replaced by the command FCTR that computes the complete (and not
only square-free) factorization of a polynomials (or of an integer).

� The commands RAT->, GCD, and LCM where added.

� Further code optimizations and new machine language routines have increased the speed on
most operations by a factor two to six.

� Algebraic aliases where added for the basic operation commands (see Section 3).

� The library can now be run from a covered port of a HP48GX safely and without a�ecting the
performances.

� Fixed bug so that SQ in symbolics would be handled properly.

Changes from version 1.0 to 1.2

� Large part of the library was rewritten to use better internal representations, faster algorithms
and new machine language routines. The net result is that version 1.2 is 5 to 10 times faster
than version 1.0 for the simpli�cations and approximately twice as fast on the other operations.

� Errors (Bad arguments, etc...) are now also handled correctly in the symbolicmatrix operations
(in some cases they would leave garbage on the stack in version 1.0);

� The command Z2S to convert a long integer into a string was replaced by the command Z<->S
that can perform the conversion in both directions.

6 Contact

Gifts :), bug reports, and constructive comments and suggestions can be sent to either one of the
following addresses.

Claude-Nicolas Fiechter Mika Heiskanen
Department of Computer Science J�amer�antaival 7 C 355
University of Pittsburgh 02150 Espoo, Finland
Pittsburgh, PA 15260, U.S.A. e-mail: mheiskan@delta.hut.fi

e-mail: fiechter@cs.pitt.edu

21

A Simpli�cation Rules for ASIM

The tables below list the rules that ASIM uses to simplify and expand non-rational expressions.
Converse rules are used to merge back the exponential and trigonometric functions remaining after
the simpli�cation. Here x and y stand for any subexpression, n is any integer number and i is the
complex unit.

Square Function

expression simpli�ed

sq(
p
x) x

sq(i) �1
sq(cos(x)) 1� sq(sin(x))
sq(tan(x)) sq(sin(x)= cos(x))
sq(cosh(x)) 1 + sq(sinh(x))
sq(tanh(x)) sq(sinh(x)= cosh(x))

sq(xy) x2�y

Power Function

expression simpli�ed condition

ex exp(x) if x nonreal
(�x)n xn if n even

(
p
x)n xn=2 if n even
in 1, i, -1, or �i depending on n

exp(x)y exp(y � x) if y nonreal
alog(x)y alog(y � x) if y nonreal

Square Root

expression simpli�ed conditionp
x2 xp
xn xn=2 n evenp
xn

p
x � x(n�1)=2 n oddp

x � y p
x � pyp

x=y
p
x=
p
yp

�x p
x � ip

a
p
x+ b c+ d

p
x for integer solutions

Exponential

expression simpli�ed condition

exp(0) 1
exp(1) e

exp(�1) inv(e)
exp(� � i) �1
exp(x) ex if x is real

exp(ln(x)) x

exp(�x) inv(exp(x))
exp(x+ y) exp(x) � exp(y)
exp(x� y) exp(x)= exp(y)
exp(xy) exp(y)x if x is real

22

ALOG Function

expression simpli�ed condition

alog(n) integer
alog(log(x)) x

alog(�x) inv(alog(x))
alog(x+ y) alog(x) � alog(y)
alog(x� y) alog(x)=alog(y)
alog(xy) alog(y)x if x is real

Natural Logarithm

expression simpli�ed

ln(1) 0
ln(e) 1
ln(�1) � � i
ln(i) � � i=2

ln(exp(x)) x

ln(xy) ln(x) + ln(y)
ln(x=y) ln(x)� ln(y)
ln(xy) y � ln(x)

ln(inv(x)) � ln(x)
ln(
p
x) ln(x)=2

Base 10 Logarithm

expression simpli�ed

log(1) 0
log(alog(x)) x

log(xy) log(x) + log(y)
log(x=y) log(x)� log(y)
log(xy) y � log(x)

log(inv(x)) � log(x)
log(

p
x) log(x)=2

Trigonometric Functions

expression simpli�ed

sin(asin(x)) x

sin(acos(x))
p
1� x2

sin(atan(x)) x=
p
1 + x2

sin(�x) � sin(x)
cos(acos(x)) x

cos(asin(x))
p
1� x2

cos(atan(x)) 1=
p
1 + x2

cos(�x) cos(x)
tan(atan(x)) x

tan(asin(x)) x=
p
1� x2

tan(acos(x))
p
1� x2=x

tan(�x) � tan(x)
asin(0) 0
atan(0) 0

23

Hyperbolic Functions

expression simpli�ed

sinh(0) 0
sinh(asinh(x)) x

sinh(atanh(x)) x=
p
1� x2

cosh(0) 1
cosh(acosh(x)) x

cosh(asinh(x))
p
1 + x2

cosh(atanh(x)) 1=
p
1� x2

tanh(0) 0
tanh(atanh(x)) x

tanh(asinh(x)) �i � x=
p
1 + x2

asinh(0) 0
atanh(0) 0

Division

expression simpli�ed

inv(i) �i
inv(inv(x)) x

x=
p
x

p
x

sin(x)= cos(x) tan(x)
sin(x)= tan(x) cos(x)
cos(x) � tan(x) sin(x)
tan(x)= sin(x) 1= cos(x)

Absolute Value

expression simpli�ed

abs(abs(x)) abs(x)
abs(re(x)) re(x)
abs(im(x)) im(x)
abs(�) �

abs(e) e

abs(i) 1
abs(�x) abs(x)

Real Part

expression simpli�ed

re(re(x)) re(x)
re(im(x)) im(x)
re(conj(x)) re(x)
re(abs(x)) abs(x)
re(�) �

re(e) e

re(i) 0
re(�x) �re(x)
re(x+ y) re(x) + re(y)
re(x� y) re(x)� re(y)

24

Imaginary Part

expression simpli�ed

im(im(x)) 0
im(re(x)) 0
im(conj(x)) �im(x)
im(abs(x)) 0
im(�) 0
im(e) 0
im(i) 1
im(�x) �im(x)
im(x+ y) im(x) + im(y)
im(x� y) im(x)� im(y)

Conjugate

expression simpli�ed

conj(conj(x)) x

conj(re(x)) re(x)
conj(im(x)) im(x)
conj(abs(x)) abs(x)
conj(�) �

conj(e) e

conj(i) �i
conj(�x) �conj(x)
conj(x+ y) conj(x) + conj(y)
conj(x� y) conj(x)� conj(y)

25

B Command Reference

We give below a listing of all the commands provided by ALG48 with stack diagrams showing the
argument(s) they require. We use the following abbreviations

x or y Real numbers.

z Integer real number.

n Positive integer real number.

#z Unlimited precision binary integer (hexstring).

#n Positive binary integer (hexstring).

"z" Character string representing a number in decimal.

'symb' Symbolic expression or variable.

'x' Variable (local or global).

s Scalar (real number, variable, or symbolic expression).

f vector g Symbolic vector, represented by a list of the form fa1
. . .ang where each ai is a scalar.

ff matrix gg Symbolic matrix, represented by a list of the form ffa11
. . .a1mg . . .fan1 . . .anmgg where each aij is a scalar.

ff sq-matrix gg Square symbolic matrix.

f 'x' 'y' 'z' g List of variables.

f 'eq1' 'eq2' g System of equations, represented by a list of symbolic equa-
tions or expressions. Expressions are interpreted as equa-
tions with zero on the right-hand side.

f s-list g List whose elements are either scalars or s-list themselves
(includes vectors, matrices, and system of equations).

The entries marked with an asterisk (�) in the stack diagrams are the operations a�ected by the
status of the automatic simpli�cation ag (see Section 4.5).

� RSIM { Rational simpli�cation command

Level 1 ! Level 1

'symb 1' ! 'symb 2'
f s-list 1 g ! f s-list 2 g

z ! z

� FCTR { Factorization command

Level 1 ! Level 1

'symb 1' ! 'symb 2'
f s-list 1 g ! f s-list 2 g

z ! z
#z ! f #z1 #z2 ... #zk g
"z" ! 'z1*z2* ... *zk'

26

� AADD { Algebraic addition command

Level 2 Level 1 ! Level 1

ff matrix 1 gg ff matrix 2 gg ! ff matrix 2 + matrix 1 gg (�)
f vector 1 g f vector 2 g ! f vector 2 + vector 1 g (�)

ff sq matrix gg s ! ff I*s + sq matrix gg (�)
s ff sq matrix gg ! ff sq matrix + I*s gg (�)

'symb 1' 'symb 2' ! 'symb 2+symb 1' (�)
'symb' x ! 'x+symb' (�)

x 'symb' ! 'symb+x' (�)
#z1 #z2 ! #z3
#z1 z2 ! #z3
z1 #z2 ! #z3

� ASUB { Algebraic subtraction command

Level 2 Level 1 ! Level 1

ff matrix 1 gg ff matrix 2 gg ! ff matrix 2 - matrix 1 gg (�)
f vector 1 g f vector 2 g ! f vector 2 - vector 1 g (�)

ff sq-matrix gg s ! ff I*s - sq matrix gg (�)
s ff sq-matrix gg ! ff sq matrix - I*s gg (�)

'symb 1' 'symb 2' ! 'symb 2-symb 1' (�)
'symb' x ! 'x-symb' (�)

x 'symb' ! 'symb-x' (�)
#z1 #z2 ! #z3
#z1 z2 ! #z3
z1 #z2 ! #z3

� AMUL { Algebraic multiplication command

Level 2 Level 1 ! Level 1

ff matrix 1 gg ff matrix 2 gg ! ff matrix 2 * matrix 1 gg (�)
ff matrix gg f vector g ! ff matrix * vector gg (�)
f vector g ff matrix gg ! ff matrix * vector gg (�)
ff matrix gg s ! ff s * matrix gg (�)

s ff matrix gg ! ff matrix * s gg (�)
f vector g s ! f s * vector g (�)

s f vector g ! f vector * s g (�)
'symb 1' 'symb 2' ! 'symb 2*symb 1' (�)
'symb' x ! 'x*symb' (�)

x 'symb' ! 'symb*x' (�)
#z1 #z2 ! #z3
#z1 z2 ! #z3
z1 #z2 ! #z3

27

� ADIV - Algebraic division command

Level 2 Level 1 ! Level 1

ff matrix gg ff sq-matrix gg ! ff matrix * (sq-matrix)^-1 gg
f vector g ff sq-matrix gg ! ff vector * (sq-matrix)^-1 gg

s ff sq-matrix gg ! ff s * (sq-matrix)^-1 gg
ff matrix gg s ! ff matrix / s gg (�)
f vector g s ! f vector / s g (�)
'symb 1' 'symb 2' ! 'symb 1/symb 2' (�)
'symb' x ! 'symb/x' (�)

x 'symb' ! 'x/symb' (�)
x y ! 'x/y' (�)

#z1 #z2 ! #z3
#z1 z2 ! #z3
z1 #z2 ! #z3

� APOW - Algebraic exponentiation command

Level 2 Level 1 ! Level 1

ff sq-matrix gg z ! ff (sq-matrix)^z gg (�)
'symb' z ! 'symb^z' (�)
#z1 #n ! #z2
#z1 n ! #z2
z1 #n ! #z2

� ANEG - Algebraic negation command

Level 1 ! Level 1

f s-list 1 g ! f s-list 2 g
'symb' ! '-symb'
#z1 ! #z2

� AINV - Algebraic inverse command

Level 1 ! Level 1

ff sq-matrix gg ! ff (sq-matrix)^-1 gg
'symb' ! 'INV(symb)' (�)

x ! '1/x' (�)

� MDET - Symbolic matrix determinant

Level 1 ! Level 1

ff sq-matrix gg ! 'det(sq-matrix)'

� MLU - Symbolic matrix LU decomposition

Level 1 ! Level 2 Level 1

ff sq-matrix 1 gg ! ff sq-matrix 2 gg n

� MTRN - Symbolic matrix transpose

Level 1 ! Level 1

ff matrix 1 gg ! ff matrix 2 gg
f vector g ! ff matrix gg

28

� MIDN - Symbolic identity matrix

Level 1 ! Level 1

n ! ff (n� n) identity-matrix gg

� Z<->S or ZS - Conversion from unlimited precision integer to string

Level 1 ! Level 1

#z ! "z"
"z" ! #z
z ! #z

� GCD - Greatest Common Divisor command

Level 2 Level 1 ! Level 1

'poly 1' 'poly 2' ! 'poly gcd'
'poly' x ! z
x 'poly' ! z
z1 z2 ! z3
z1 #z2/"z2" ! #z3

#z1/"z1" z2/#z2/"z2" ! #z3

� LCM - Least Common Multiple command

Level 2 Level 1 ! Level 1

'poly 1' 'poly 2' ! 'poly lcm'
'poly' x ! 'poly lcm'
x 'poly' ! 'poly lcm'
z1 z2 ! z3
z1 #z2/"z2" ! #z3

#z1/"z1" z2/#z2/"z2" ! #z3

� RAT-> - Rational to stack command

Level 1 ! Level 2 Level 1

'rational function' ! 'numerator' 'denominator'
x ! x 1.0

� ASIM { Algebraic simpli�cation command

Level 1 ! Level 1

'symb 1' ! 'symb 2'
f s-list 1 g ! f s-list 2 g

(x; y) ! 0x+ yi0

z ! z

� MOD+ { Modular addition

Level 3 Level 2 Level 1 ! Level 1

z1/#z1/"z1" z2/#z2/"z2" n/#n/"n" ! #z3

� MOD- { Modular substraction

Level 3 Level 2 Level 1 ! Level 1

z1/#z1/"z1" z2/#z2/"z2" n/#n/"n" ! #z3

29

� MOD* { Modular multiplication

Level 3 Level 2 Level 1 ! Level 1

z1/#z1/"z1" z2/#z2/"z2" n/#n/"n" ! #z3

� MOD/ { Modular division

Level 3 Level 2 Level 1 ! Level 1

z1/#z1/"z1" z2/#z2/"z2" n/#n/"n" ! #z3

� MODPOW { Modular exponentiation

Level 3 Level 2 Level 1 ! Level 1

z1/#z1/"z1" z2/#z2/"z2" n/#n/"n" ! #z3

� MODINV { Inverse modulo N

Level 2 Level 1 ! Level 1

z1/#z1/"z1" n/#n/"n" ! #z2

� PRIM? { Prime testing

Level 1 ! Level 1

z/#z/"z" ! 0/1

� PRIM+ { Next prime

Level 1 ! Level 1

z/#z/"z" ! #n

� PRIM- { Previous prime

Level 1 ! Level 1

z/#z/"z" ! #n

� RORD { Reorder polynomial

Level 2 Level 1 ! Level 1

'poly 1' 'x' ! 'poly 2'
z 'x' ! z

'poly 1' f 'x' 'y' 'z' g ! 'poly 2'

z f 'x' 'y' 'z' g ! z

� PF { Partial fraction expansion

Level 2 Level 1 ! Level 1

'symb 1' f 'x' 'y' 'z' g ! 'symb 2'
z f 'x' 'y' 'z' g ! z

'symb 1' ! 'symb 2'
z ! z

� RINT { Rational function integration

Level 2 Level 1 ! Level 1

'symb 1' 'x' ! 'symb 2'
z 'x' ! 'z*x'

30

� GBASIS { Gr�obner basis of a system of polynomial equations

Level 2 Level 1 ! Level 1

f 'eq1' 'eq2' g f 'x' 'y' 'z' g ! f 'eq1' 'eq2' g0

� GSOLVE { Solutions of a system of polynomial equations

Level 2 Level 1 ! Level n+ 1 . . . Level 2 Level 1

f 'eq1' 'eq2' g f 'x' 'y' 'z' g ! f 'eq1' 'eq2' gn. . .f 'eq1' 'eq2' g1 n

� GSIMP { Reduction of an expression given a system of side relations

Level 3 Level 2 Level 1 ! Level 1

'symb1' f 'eq1' 'eq2' g f 'x' 'y' 'z' g ! 'symb2'

31

SpecFun
A Special Functions Library

for the HP48 with ALG48

Version 4.0

Mika Heiskanen Claude-Nicolas Fiechter

c 1994-97

1 Acknowledgements, copyright & disclaimer of warranty

All the �les of the SpecFun and ALG48 libraries are copyrighted c by Claude-Nicolas Fiechter and Mika Heiskanen.

SpecFun is distributed in the hope that it will be useful, but the COPYRIGHT HOLDERS PROVIDE

THE PROGRAM \AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANDABILITY AND FITNESS FORA PARTICULARPURPOSE. IN NO EVENTWILL

THE COPYRIGHT HOLDERS BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY

GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF

THE USE OR INABILITY TO USE THE PROGRAM.

This version of SpecFun is a GiftWare release. You may use it as long as you like, but only for non-commercial
purposes and only as a private person. Permission to copy the whole, unmodi�ed, SpecFun library is granted
provided that the copies are not made or distributed for resale (excepting nominal copying fees) and provided
that you conspicuously and appropriately include on each copy this copyright notice and disclaimer of warranty.

Special thanks to Dr. Mark A. Ordal whose Bessel function implementations were the basis for the ones in
SpecFun.

2 Overview

SpecFun de�nes a number of commonly used "special functions" not provided by the HP48, including Bessel func-
tions, error functions, Gamma and Beta functions, and polynomial generating functions. Polynomial generating
functions include Legendre, Hermite, Tschebysche� and Laguerre polynomials as well as spherical harmonics.

SpecFun works in conjunction with the ALG48 library c by Claude-Nicolas Fiechter and Mika Heiskanen and
needs ALG48 to be installed to work properly. The function names in SpecFun were chosen so as to be displayed
in the customary way when using the EQSTK library c by the same authors.

3 Installation

SpecFun takes approximately 6Kb of memory and works in both HP48G(X) and HP48S(X). SpecFun uses some
of the internal subroutines in ALG48, and thus requires it to be installed. See the ALG48 documentation for
information on installing ALG48.

1

Due to the special optimization features used in ALG48, not all storage combinations are allowed. The following
ones are possible:

� In SX there are no restrictions

� In GX if ALG48 is in port 0 or port 1 then SpecFun can be stored in any port.

� In GX if ALG48 is stored in port 2 (or higher) then SpecFun must be stored in the same port, or port 0.

Installing ALG48 and SpecFun in the same port seems the most natural choice and is highly recommended.

SpecFun is an auto-attaching library (library number 911). To install it on your HP48 download the �le
specfun.lib onto your calculator (in binary mode), put the content of the created variable on the stack, store
it the port of your choice (e.g., 'SPECFUN.LIB' DUP RCL SWAP PURGE 0 STO) and power-cycle the calculator.

4 Use

The functions de�ned by SpecFun are divided in two groups: special functions and polynomial generating func-
tions. We give below the de�nitions of all the functions implemented in SpecFun. Section 4.3 gives some example
of utilization.

4.1 Special Functions

The special functions accept all combinations of real and symbolic arguments, but are evaluated only for real
arguments. To evaluate the Bessel functions the order argument n has to be an integer value, otherwise an
"Undefined Result" error is generated.

� Gamma Function

GAMMA(x) =

Z
1

0

e�ttx�1 dt ; x > 0

� Beta Function

BETA(x; y) =

Z 1

0

tx�1(1� t)y�1 dt =
GAMMA(x)GAMMA(y)

GAMMA(x + y)
; x; y > 0

� Error Functions

ERF(x) =
2

�

Z x

0

e�t
2

dt

ERFC(x) =
2

�

Z
1

x

e�t
2

dt = 1� ERF(x)

� Bessel Functions

J.n(n; x) = Jn(x) =

1X
r=0

(�1)r(x=2)n+2r
r! � GAMMA(n + r + 1)

Y.n(n; x) = Yn(x) = lim
p!n

Jp(x) cos(p�) � J�p(x)

sin(p�)
; x � 0

I.n(n; x) = In(x) = i�nJn(ix)

K.n(n; x) = Kn(x) = lim
p!n

I�p(x)� Ip(x)

sin(p�)
� �
2

; x � 0

� Quick access commands

J.0(x) = J0(x)

J.1(x) = J1(x)

2

4.2 Polynomial Generating Functions

The polynomial generating functions expect the order arguments (n,m) to be positive integer values and the
variables (x,a,b) to be symbolic or identi�er objects. A simpli�ed output form is used for the Legendre polynomials
when the variable argument is of the form \cos(x)", for some arbitrary sub-expression x (see Section 4.3).

� Legendre Polynomials

P.n(n; x) = Pn(x) =
1

2nn!
� dn

dxn

�
x2 � 1

�n
P.nm(n;m; x) = Pm

n
(x) =

�
1� x2

�m=2 � dm

dxm
Pn(x)

� Spherical Harmonics

Y.nm(n;m; a; b) = Y m

n
(a; b) = (�1)m

s
(2n+ 1)(n�m)!

4�(n+m)!
Pm

n
(cos a)eimb

� Hermite Polynomials

H.n(n; x) = Hn(x) = (�1)n � ex2=2 � d
n

dxn
e�x

2
=2

� Tschebysche� Polynomials

T.n(n; x) = Tn(x) = cos (n � arccos(x))

U.n(n; x) = Un(x) =
sin ((n+ 1) arccos(x))p

1� x2

� Laguerre Polynomials

L.n(x) = Ln(x) =
ex

n!
� dn

dxn

�
xne�x

�
L.nm(x) = Lm

n (x) = (�1)m dm

dxm
Ln+m(x)

4.3 Examples

5 X P.n) 1

8
(63X5 � 70X3 + 15X) Standard output form

2 1 X P.nm) 3X
�
1�X2

�1=2
Standard output form

2 1 COS(X) P.nm) 3 cos(X) sin(X) Special output for \cos(x)"

2 1 t p Y.nm) �
r

5

24�
� 3 cos(t) sin(t)eip Usually t; p = �; �

5 COS(X) T.n) 16 cos(x)5 � 20 cos(x)3 + 5 cos(x) Expansion of cos(5x)

5 Changes from Previous Versions

5.1 Changes from version 3.0 to 4.0

� Fixed Gamma function for arguments smaller than -8

3

5.2 Changes from version 2.4 to 3.0

� Removed in�nite precision factorial command.

� Extended Bessel function ranges to x < 0 and n < 0 when possible.

� Allowed m > n for polynomial generating functions.

6 Contact

Gifts :), bug reports, and constructive comments and suggestions can be sent to either one of the following
addresses.

Mika Heiskanen Claude-Nicolas Fiechter
J�amer�antaival 7 C 355 Department of Computer Science
02150 ESPOO University of Pittsburgh
Finland Pittsburgh, PA 15260, U.S.A.
mheiskan@cc.hut.fi fiechter@cs.pitt.edu

4

Gr�obner bases in ALG48

Mika Heiskanen

April 3, 1997

1 Systems of Polynomial Equations

Assume we have a set of polynomial equations fi(x1; x2; :::; xn) = 0, say for example

x2 + yz � 2 = 0 (1)

xz + y2 � 3 = 0 (2)

xy + z2 � 5 = 0 (3)

One can generalize the idea of Gaussian elimination to multivariate equations by using the concept of spolynomials

spoly(f; g) = lcm(LT (f); LT (g))(
f

LT (f)
� g

LT (g)
)

where LT (f) returns the leading term of the polynomial f . In lexicographic ordering, which is used throughout
ALG48 ,we would thus get leading terms x2, xz and xy for the above system (x � y � z). We immediately
note that the spolynomial calculation cancels the leading terms from both the input polynomials, and since the
spolynomial is a linear combination of the original equations it still has the same roots as the input polynomials.

For the system above we get 3 di�erent spolynomials from the possible pairs of polynomials (1; 2), (1; 3) and (2; 3)

�xy2 + 3x+ yz2 � 2 z = 0

�xz2 + 5x+ y2z � 2 y = 0

y3 � 3 y � z3 + 5 z = 0

Next we note that the leading terms of the �rst two polynomials are multiples of the leading terms of some
polynomials in the original system, thus we may \reduce" the spolynomials by substracting proper multiples of
the original polynomials to obtain further reductions as follows��xy2 + 3x+ yz2 � 2 z

�
+ y

�
xy + z2 � 5

�
= 3x+ 2 yz2 � 5 y � 2 z = 0��xz2 + 5x+ y2z � 2 y

�
+ z

�
xz + y2 � 3

�
= 5x+ 2 y2z � 2 y � 3 z = 0

y3 � 3 y � z3 + 5 z = 0

We see that the �rst two equations are in a sense what we would expect in a multivariate triangularization process,
namely if we know y and z we can solve x from either one of the �rst two equations, and if we know z we can
solve y from the last equation. Thus what remains is �nding the univariate polynomial for z { if one exists.

To reach this goal we note that this time we can reduce the original system of equations by multiplying them
with suitable constants and then substracting suitable multiples of the equations above. Obviously this process
will cause a cascade of reductions in all the equations we have, so we will not repeat it here in detail.

1

2 Gr�obner bases and the Buchberger algorithm

Buchberger gives an algorithm which completes the basis of equations so that all possible spolynomials will reduce
to zero with respect to the found basis, which is then called a Gr�obner basis.

We should immediately note that although Gr�obner bases are in a sense minimal since any leading term is
cancelled if possible { and in fact most implementations cancel terms inside the polynomial too { Gr�obner bases
are in no way unique. In particular they depend heavily on the chosen ordering of terms (lexicographic throughout
this paper), the order in which possible pairs are selected and even in which order reductions are done.

What this means in practice is that a Gr�obner basis for a given set of polynomials (which may be interpreted to
be equations with r.h.s = 0) may not be the \simplest" possible. However as opposed to the resultant method
of solving polynomial systems Gr�obner bases are minimal in the sense that they do not introduce any extraneous
roots to the respective system of polynomial equations

3 Properties of Gr�obner bases

We refrain from details but instead merely list some of the most improtant properties of Gr�obner bases:

� A system of equations has no solutions if and only if the respective Gr�obner basis includes a constant. If
the basis is fully reduced - including removal of unnecessary integer multipliers - then the reduced basis will
consist only of the constant 1.

� A system has �nitely many solutions if and only if for each variable xi the basis contains a polynomial
whose leading term is of the form xni with n � 1, e.g. the variable appears alone.

� If the Gr�obner basis with respect to lexicographic ordering is sorted according to the leading terms it is
often, but not always, in \triangulular" form suitable for solving via backsubstitution.

We also mention perhaps the most important property of the Buchberger algorithm { it is slow as molasses.
Naturally since lexicographic ordering is most useful for solving polynomial systems it also appears to be the
worst possible of the commonly used orderings with respect to execution time. Also since polynomial reductions
can be interpreted as a division by multiple polynomials the Buchberger algorithm su�ers from coe�cient explosion
common for all polynomial remainder sequence algorithms { this may occur in intermediate calculations even if
the �nal basis would be the constant 1.

4 Gr�obner basis Commands in ALG48

GBASIS calculates the Gr�obner basis for a given set of polynomials with the given lexicographic ordering
(missing variables are appended to the given set in alphabetical order).

GSIMP calculates the Gr�obner basis as above for a given set of side relations and then reduces a given equation
with respect to the side relations.

GSOLVE calculates the Gr�obner basis as above for a given set of polynomial equations and then factors the set
as far as possible to obtain a set of individual solutions.

4.1 GBASIS example

The Gr�obner basis for our �rst example can be calculated with GBASIS as follows

2: f x2 + yz � 2
xz + y2 � 3
xy + z2 � 5 g

2

1: f x y z g
=)
1: f 361x� 88 z7 + 872 z5 � 2690 z3 + 2375 z

361 y + 8 z7 + 52 z5 � 740 z3 + 1425 z
8 z8 � 100 z6 + 438 z4 � 760 z2 + 361 g

From the basis it is easy to see there are exactly 8 solutions to the system of equations.

4.2 GSIMP example

A well known example for simpli�cation with side relations is the following problem from the Dutch Mathematics
Olympiad of 1991.

Let a,b,c be real numbers such that

a+ b+ c = 3

a2 + b2 + c2 = 9

a3 + b3 + c3 = 24

Calculate a4 + b4 + c4.

Using GSIMP we get the result as follows

3: a4 + b4 + c4

2: f a + b+ c = 3
a2 + b2 + c2 = 9
a3 + b3 + c3 = 24 g

1: f g
=)
1: 69

One should note that had we computed the solutions for a,b and c �rst using either GBASIS or GSOLVE we
would have ended up with an irreducible third degree polynomial (with 3 real roots), and substituting the values
back would have involved considerably more work.

4.3 GSOLVE example

Find the extrema of x3y2 (6� x� y). Taking the derivatives with respect to x and y and calling GSOLVE we get

2: f x2y2 (18� 4x� 3 y)
x3y (12� 2x� 3 y) g

1: f g
=)
4: f y g
3: f x g

3

2: f x� 3
y � 2 g

1: 3

meaning we have solutions x = 0 or y = 0 or x = 3; y = 2. Calculating the basis instead and factoring it shows
the extra work GSOLVE has done to isolate the solutions

x2y
�
8x2 � 48x� 9 y2 + 54 y

�
x2y2 (4x+ 3 y � 18)
x2y2 (y � 6) (y � 2)

Clearly the minimum possible system with the same solutions would have been

xy (x� 3)
xy (y � 2)

Obviously we could remove the powers of any factor from the basis GBASIS FCTR returned since we are only
interested in the roots. Thus we can recalculate the basis for the following polynomials

xy
�
8x2 � 48x� 9 y2 + 54 y

�
xy (4x+ 3 y � 18)
xy (y � 6) (y � 2)

which is

xy (4x+ 3 y � 18)
xy (y � 6) (y � 2)

By substituting y = 6 into above we get x = 0, which explains the additional reduction GSOLVE has done since
x = 0 is already a solution in itself. Much more complex cases can in fact occur, but GSOLVE can detect most
of them simply by appending any two solutions it �nds together and calculating the respective basis. If the basis
equals either one of the two solutions, that solution is unnecessary. Otherwise the basis would be an intersection
of the two solutions, possibly 1 if the solutions are completely independant.

To give an example of a nontrivial simpli�cation in the solutions consider the following system of equations

xy + xz � x+ z2 � 2 = 0

xy2 + 2xz � 3x+ y + z � 1 = 0

y3 + y2z + 2 yz � 3 y + 2 z3 � 3 z = 0

Calculating the basis with ordering z � y � x, factoring it, calculating the basis for each possible combination of
factors and removing obvious simpli�cations we would obtain the solutions

�
z + y � 1 = 0
y2 � 2 y � 1 = 0

(
2 z + x3 � 6x2 � 8x+ 1 = 0
2 y � x3 + 6x2 + 8x� 1 = 0
x4 � 6x3 � 9x2 + 2x+ 1 = 0

(
2 z + x3 � 6x2 � 8x� 1 = 0
2 y � x3 + 6x2 + 8x� 1 = 0
x6 � 12x5 + 20x4 + 94x3 + 76x2 + 16x� 7 = 0

We note that the �rst solution has x as a parameter while the other two solutions are �nite. Thus we try
appending each of the other two solutions to the �rst solution and calculate the basis for the larger systems.

4

The �rst calculation with the 4th degree polynomial in x returns 1, a disjoint solution, but the second one with
the 6th degree polynomial returns the latter solution as is. Since this clearly implies both solutions are satis�ed
simultaneously for the �nite set of roots, the �nite solution is clearly just a special case of the �rst solution. This
is easily veri�ed numerically by calculating the roots of the 6th degree polynomial and solving y and z from both
sets of equations. Obviously the Gr�obner basis method o�ers a much more conclusive proof that the 3rd solution
is unnecessary, and in the case of parametric solutions the independance cannot be proven numerically at all.

However while GSOLVE does check all pairs to remove redudant solutions, the fact that not all solutions may
be found to a lowest possible degree may mean that not all reducible solutions are detected. For example for the
following system

x2 + y + z � 3 = 0

x+ y2 + z � 3 = 0

x+ y + z2 � 3 = 0

GSOLVE returns the solutions(
x� 1 = 0
y � 1 = 0
z � 1 = 0

(
x+ 3 = 0
y + 3 = 0
z + 3 = 0

(
x+ z � 1 = 0
y + z � 1 = 0
z2 � 2 z � 1 = 0

(
x+ y � 1 = 0
y2 � y + z � 2 = 0
z2 � 2 = 0

In the last solution we have z2�2 = 0, thus we may substract it from the second polynomial in the same solution.
The result then factors to (y � z) (z + y � 1) and thus we can split the last solution with new Gr�obner basis
calculations to (

x� z = 0
y + z � 1 = 0
z2 � 2 = 0

(
x+ z � 1 = 0
y � z = 0
z2 � 2 = 0

Obviously such reductions cannot be easily detected (as far as I know) and GSOLVE makes no attempt to even
do so. For a better example see SY1.

Failure examples above may no longer be valid as the algorithms are improved during development.

5 Some Polynomial Systems and their Solutions

The examples in this section have been picked from various articles and reports on the subject of solving systems
of polynomial equations. Several can be found from Journal of Symbolic Computation, the reports by Gr�abe and
Algorithms for Computer Algebra by Geddes et al. For those interested a list of various internet resources are
listed below.

� Virtual Computer Algbera Library { Gr�obner Bases

http://www.can.nl/CA_Library/Groebner/index.html

� Publications by the Computer Algebra Group of the University of Leipzig

http://www.informatik.uni-leipzig.de/~compalg/ca-fg.html

� A Review of CAS Mathematical Capabilities

http://math.unm.edu/~wester/cas_review.html

� Gr�obner Bases Algorithm & The Charasteristic Sets Method

http://symbolicnet.mcs.kent.edu/areas/groebner/index.html

5

5.1 UNIVAR

x4 � 3x3 + 6x� 4 = 0

Solution in 1.66s.
fx2 � 2 fx� 1 fx� 2

5.2 ROOTS1

p
x� 1 +

p
x� 2 =

p
x+ 3

We de�ne auxiliary variables as follows 8<
:
y1 =

p
x� 1

y2 =
p
x� 2

y3 =
p
x� 3

and thus we get a system of equations

y1 + y2 = y3

y2
1

= x� 1

y2
2

= x� 2

y2
3

= x+ 3

We want to eliminate the auxiliary variables, thus we use GSOLVE with ordering f y1 y2 y3 x g and get8><
>:
2y1 � 3y3x+ 8y3
2y2 + 3y3x� 10y3
y2
3
� x� 3

3x2 � 28

Note that if we consider only positive real roots raising to power m usually introduces an m-fold ambiguity. In
practice this means we simply have to check the answers we got. The numerical values of the solutions in this
case are �3:0550504633 and 3:0550504633. The former obviously causes y2

1
, y2

2
and y2

3
to be negative, thus we

discard it. The latter solution does not cause such problems and is easily checked numerically to be a solution.
Thus in this case we can express the solution as the positive root of the last polynomial, and the �nal solution is
x = 2

3

p
21.

5.3 ROOTS2

p
x� 1 +

p
x� 2 =

p
x+ yp

y � 1�
p
y � 2 =

p
x� y

This system is transformed into

x1 + x2 = x3

y1 � y2 = y3

x2
1

= x� 1

x2
2

= x� 2

x2
3

= x+ y

y2
1

= y � 1

y2
2

= y � 2

y2
3

= x� y

6

Eliminating the auxiliary variables with GBASIS using ordering f x1 x1 x3 y1 y2 y3 x y g gives the basis in 21.2s.
The last two polynomials in the basis give the solution�

79x+ 105y3 � 474y2 + 418y + 9
21y4 � 120y3 + 210y2 � 108y + 1

The polynomial in y gives 4 real roots 8><
>:
:00943128534889
:895009381599
2:02767870828
2:78216633906

and the corresponding values of x from the �rst equation are8><
>:
�:163293714771
�:996187381608
2:74572428581
2:9851853819

Clearly the �rst two solutions would make x2
1
, x2

2
, y2

1
and y2

2
negative so we discard them. x2

3
and y2

3
are positive

for the remaining two solutions, and inserting the answers into the original equations shows them to be true
solutions. Thus the solutions are �

x = 2:74572428581
y = 2:02767870828

�
x = 2:9851853819
y = 2:78216633906

5.4 MINPOLY1

What is the minimal polynomial for
p
5 + 2

p
6 ?

Transforming the problem into form

y = x1

x2
1

= 5 + 2x2

x2
2

= 6

and solving for y with ordering f x1 x2 y g we get the basis
�x1 + y

2x2 � y2 + 5

y4 � 10y2 + 1

Since the last polynomial is irreducible, it is the minimal polynomial for
p
5 + 2

p
6.

5.5 MINPOLY2

What is the minimal polynomial for
p
5 + 2

p
6 +

p
5� 2

p
6 ?

Transforming the problem into form

y = x1 + x2

x2
1

= 5 + 2x3

x2
2

= 5� 2x3

x2
3

= 6

and solving for y we get the polynomial y4 � 20y2 + 9, which factors into
�
y2 � 8

� �
y2 � 12

�
. Checking the

numerical values we deduce the minimal polynomial is y2 � 12, meaning the value of the original expression is

actually
p
12 = 2

p
3. The polynomial y2 � 8 is in fact the minimal polynomial for

p
5 + 2

p
6�

p
5� 2

p
6.

7

5.6 TUTO

1� x� xy2 � xz2 = 0

1� y � x2y � yz2 = 0

1� z � zx2 � y2z = 0

Solution in 123.56s. Intermediate overow.(
x� z

y � z

2z3 + z � 1

(
x+ y + z

y2 + yz + z2 + 1
z3 + z + 1

(
2x� 2z3 + 4z2 � 3z � 1
2y � 2z3 + 4z2 � 3z � 1
2z4 � 2z3 + z2 + 2z + 1(

x� z

y + 2z3 + 2z � 1
2z4 + 3z2 � z + 1

(
x+ 2z3 + 2z � 1
y � z

2z4 + 3z2 � z + 1

5.7 ART1

x1 x3 � 3x2 = 1

�2x4 x1 � x3 x2 x4 + 2x3 = 0

x2 x
2

4
� x4 x1 + x3 = 0

Solution in 16.84s. (
x1 � x2x4 + 2
2x2x4

2 + 3x2 � 4x4 + 1
x3 + 2x4

(
3x2 + 1
x3
x4

8><
>:
x1x3 � 1
x1x4 � x3
x2
x3

2 � x4

5.8 ART2

xy + 2x2 � y + 1 = 0

2 y2 � 3xy � x� 2 = 0

2x2 � 3 y + 1 + 2 y3 � 3 y2x = 0

Solution in 4.99s. nx
y � 1

�
2x� 6y � 5
14y2 + 21y + 9

5.9 EQ1

3x1 + 4x2 � 2x3 + x4 = �2
x1 � x2 + 2x3 + 2x4 = 7

4x1 � 3x2 + 4x3 � 3x4 = 2

�x1 + x2 + 6x3 � x4 = 1

Solution in 3.50s. 8><
>:
2x1 � 1
x2 + 1
4x3 � 3
x4 � 2

8

5.10 EQ7

cx+ (c+ 1) y + z = 1

x+ cy + (c + 1) z = 2

(c+ 1)x+ y + cz = �1

Solution in 3.33s with variables f x y z c g. (
x+ cz

y � zc2 + 1
zc3 + z � c� 2

Note that if c is to be interpreted as a parameter, Maple would also solve the system for any parameter multipliers
appearing in the leading terms. In this case it would append c3 + 1 to the original system and then solve it. In
this particular case we would get no solutions, meaning the full solution is actually8<

:
x+ cz

y � zc2 + 1�
c3 + 1

�
z � c � 2

(c3 + 1 6= 0)

Note that if we set c3 + 1 = 0 the last polynomial in the solution would be �c � 2, which clearly cannot be zero
simultaneously with c3 + 1.

5.11 EQ8

x2c+ xy � yc � 1 = 0

2xy2 + yc2 � c2 � 2 = 0

x+ y2 � 2 = 0

Solution in 101.28s with variables f x y c g. Intermediate overow. Note that we do not interpret any variable
to be a parameter in Gr�obner basis calculations, thus if c is to be interpreted as a parameter the latter solution
is extraneous. �

x� 1
y � 1(

19696x� 587c8 � 742c7 + 8056c6 + 16070c5 + 4998c4 � 1962c3 + 20200c2 � 6892c� 21752
19696y+ 409c8 � 498c7 � 5848c6 + 2862c5 + 10694c4� 3666c3 � 26976c2 + 49764c� 8600
c9 � 14c7 � 10c6 + 10c5 � 2c4 � 56c3 + 64c2 � 24c� 8

5.12 EQ14

43� 52x� 96 y + 4 z + 5 yz + 26xz + 2xy = 0

�69� 35 y � 8 yz � 14xy + 3xz � 75 z2 = 0

�44� 3xz � 78xy � 8 y2 + 8 z2 = 0

Solution in 60.03s. Intermediate overow.(
3:07089285252e44x� 3:2480628068e40z6 + : : :

5:13526232863e41y � 3:45508260975e36z6 + : : :

2015808044 z7� : : :

9

5.13 EX14

x2y + 4 y2 � 17 = 0

2xy � 3 y3 + 8 = 0

xy2 � 5xy + 1 = 0

Solution in 1.55s. No solutions.

5.14 EX16

xy + xz � x+ z2 � 2 = 0

xy2 + 2xz � 3x+ y + z � 1 = 0

y3 + y2z + 2 yz � 3 y + 2 z2 � 3 z = 0

Solution in 8.70s. n
y + z � 1
z2 � 2

(
x� z2 + 2
y + z

z4 + 2z3 � 5z2 � 4z + 5

5.15 EX18

x2 + yz � 2 = 0

y2 + xz � 3 = 0

xy + z2 � 5 = 0

Solution in 13.57s. (
361x� 88z7 + 872z5 � 2690z3 + 2375z
361y + 8z7 + 52z5 � 740z3 + 1425z
8z8 � 100z6 + 438z4 � 760z2 + 361

5.16 CFM

N = Cn

A+ F + 2B + 2C = Cf

HF = KxA

B = AFKy

C = KzA
2

HO = Kw

H + N = O + B + F

The variables to solve are f A B C F H N O g, the problem is choosing the best ordering, my �rst random guess
on Maple caused it to run out of memory. Given the complexity of the solutions we settle for using GBASIS only
instead of GSOLVE. Testing with and without critetion 2 shows it to be quite e�ective for this problem.

� Order f N B C F H O A g gives a basis of 23 polynomials in 19 minutes. Most of the polynomials have
mixed leading terms containing powers of H, O and A. The size of the symbolic result on my calculator
was 25304.5 bytes.

� Order f F N O B C H A g takes 202ss to �nd a basis of 14 polynomials. Size of result 6709.5 bytes.

10

� Order f N O B C H F A g takes 246s to �nd a basis of 15 polynomials. Size of result 7037.5 bytes.

� Order f N O H B C F A g takes 258s to �nd a basis of 15 polynomials. Size of result 7037.5 bytes.

� Order f N O B H C F A g takes 261.0s to �nd a basis of 15 polynomials. Size of result 7037.5 bytes.

� Order f N O B C F H A g takes 194.4s to �nd a basis of 14 polynomials. Size of result 6548 bytes. Maple
�nds the basis for this ordering relatively easily. Maple GSOLVE also manages to split the solution into 20
subsolutions, most of which are concerned with special cases of the extra parameters such as Ky = Kz = 0,
Ky = Kz, Kw = Kx = 0, Kx = 0, Kw = 0, Cf = 0, Kz = 0, Ky + 2CfKy

2 � Kz = 0, Ky = Kz = 0,
Kw = Kx = Kz = 0, Kx = Kz = 0.

We note that the best orderings are such that the variables which can be solved immediately from the system are
�rst in the ordering.

To test Maple on this problem do with(grobner) and try for example

gbasis([N-Cn,A+FF+2*B+2*C-Cf,H*FF-Kx*A,B-A*FF*Ky,C-Kz*A^2,H*Oh-Kw,H+N-Oh-B-FF],

[N, Oh, B, C, FF, H, A, Cf, Cn, Kw, Kx, Ky, Kz], plex);

or

gsolve([N-Cn,A+FF+2*B+2*C-Cf,H*FF-Kx*A,B-A*FF*Ky,C-Kz*A^2,H*Oh-Kw,H+N-Oh-B-FF],

[N, Oh, B, C, FF, H, A, Cf, Cn, Kw, Kx, Ky, Kz]);

We should also note that Maple allows a further set of identi�ers as input to determine which identi�ers are
nonzero. This means division by that variable becomes possible, and in particular that variable becomes mean-
ingless in testing reducibility by other polynomials since either polynomial can be scaled by the given set of
variables. What this means is that we would be more likely to get a smaller solution set since the Buchberger
algorithm no longer has to maintain trivial solutions in calculating a basis. This has not been implemented in
ALG48, and probably never will be since one may argue Gr�obner bases are already pushing the limits of HP48
calculators a bit too far { atleast until somebody invents a faster method than the Buchberger algorithm.

5.17 SY1

w + x+ y + z = 0

wz +wx+ xy + yz = 0

xwz +wyz + wxy + xyz = 0

wxyz � 1 = 0

Solution in 32.36s. (
w + y

x+ z

yz + 1

(
w + y

x+ z

yz � 1

8><
>:
w + x+ 2z
x2 + 2xz � 1
y � z

z2 + 1

The last solution is a special case of the �rst one. GSOLVE misses it because it does not know how to simplify
the last solution into 8><

>:
w + z

x+ z

y � z

z2 + 1

which is what the merged system for solutions 1 and 3 would give. The reason is the polynomial x2 + 2xz � 1,
which with the side relation z2 + 1 = 0 factors to (x+ z)2.

11

5.18 SY2

x2 + y + z � 3 = 0

x+ y2 + z � 3 = 0

x+ y + z2 � 3 = 0

Solution in 10.64s. Gr�abe seems to have made a typing error in the solution given by Axiom.(
x+ z � 1
y + z � 1
z2 � 2z � 1

(
x+ y � 1
y2 � y + z � 2
z2 � 2

(
x� 1
y � 1
z � 1

(
x+ 3
y + 3
z + 3

5.19 SY3

x4 + x+ 1 = 0

y4 + x+ 1 = 0

Solution in 14.23s. �
x+ y4 + 1
y8 + 2y4 + y2 + 1

n
x+ y

y4 � y + 1

n
x� y

y4 + y + 1

With ordering f y x g we would of course get the original system back as it is already in the �nal form.

5.20 SY4

u0 + 2u1 + 2u2 + 2u3 � 1 = 0

u0
2 + 2u1

2 + 2u2
2 + 2u3

2 � u0 = 0

2u0u1 + 2u1u2 + 2u2u3 � u1 = 0

2u0u2 + u1
2 + 2u1u3 � u2 = 0

Solution in 92.15s. Intermediate overow. 8><
>:
3uo � 1
u1
u2
3u3 � 1

8><
>:
u0 � 1
u1
u2
u38><

>:
168945u0+ 381533328u3

5 � 97717752u3
4 � 12529296u3

3 + 5057432u3
2 � 7598u3 � 147793

11263u1+ 5452920u3
5 � 1977048u3

4 � 589356u3
3 + 177864u3

2 + 17866u3 � 4768
16895u2� 272560464u3

5 + 78514596u3
4 + 15104988u3

3 � 5196676u3
2 � 95246u3+ 60944

42768u3
6 � 16848u3

5 � 432u3
4 + 904u3

3 � 72u3
2 � 12u3 + 1

5.21 SY5

x3 + y + z � 3 = 0

x+ y3 + z � 3 = 0

x+ y + z3 � 3 = 0

Solution in 37.56s. (
x� 1
y � 1
z � 1

(
x� z

y � z

z2 + z + 3

(
x+ y + z

y2 + yz + z2 � 1
z3 � z � 3

(
2x+ z3 � 3
2y + z3 � 3
z6 � 2z4 � 6z3 + 4z2 + 6z + 5(

x� z

y + z3 + z � 3
z6 + z4 � 6z3 + z2 � 3z + 8

(
x+ z3 + z � 3
y � z

z6 + z4 � 6z3 + z2 � 3z + 8

12

5.22 SY6

v +w + x+ y + z = 0

vw + vz + wx+ xy + yz = 0

vwx+ vwz + vyz +wxy + xyz = 0

vwxy + vwxz + vwyz + vxyz + wxyz = 0

vwxyz � 1 = 0

Out of memory error. Intermediate overow. According to Gr�abe the system has 70 complex solutions. Maple
did not give a result in 800s.

5.23 SY7

x3 + y2 + z � 3 = 0

x+ y3 + z2 � 3 = 0

x2 + y + z3 � 3 = 0

Out of memory error. Intermediate overow, debugging shows intermediate coe�cients to be up to 150 digits
long. Maple returns the solutions (

x� 1
y � 1
z � 1

(
x� z

y � z

z2 + 2z + 3

13

8>>><
>>>:

24869149520083301437469386x+
255165256933893011643447z23� 12136172040344719202209z22�
23779697908357798022468z21� 5974836847204935401981051z20�
757046918532826675437452z19+ 67659976642234750139753z18+
59132576314828431689169375z17+ 17047331545065931728851390z16+
1920383912872524060167076z15� 306811760344137168576871554z14�
152199255673120775730647454z13� 27990480309969235968770275z12+
903728873742135661065354565z11+ 652665362481617082255689001z10+
227402308581655062937529223z9� 1572723315456723830662718674z8�
1433859218357439838279983458z7� 765062554567217444745965468z6+
1559757881470798326431948854z5+ 1569444769902780960405363160z4+
1067410485582489549720064256z3� 618728537995078215103778890z2�
818981374403056838124032335z� 459873943755090949831124794

24869149520083301437469386y�
522642777396961481309537z23� 117619502557180707841141z22�
192661389775140063216300z21+ 11706606119127710215579639z20+
3876177579248947796393274z19+ 4228777960890861004473829z18�
110774734125258911957189047z17� 47702177496950554737110810z16�
33672633301732181976573130z15+ 549779209388169342460193280z14+
323346317881985679673242846z13+ 148057082666808795656977349z12�
1553879419170787994368870359z11� 1202038446113372585669220319z10�
548649017641567485449454713z9+ 2624655150237819150376259634z8+
2436989104717591251644481786z7+ 1391225343528660640180313160z6�
2581324530020339155916274046z5� 2558726713924550070857806128z4�
1737727007357120522097083560z3+ 1028738210127023927100675710z2+
1340900749450085077938524225z+ 675712294615812078391764432

z24 � z23 � 23z21 + 20z20 + 3z19 + 225z18 � 168z17� 66z16� 1158z15+
670z14 + 569z13 + 3443z12� 1357z11� 2053z10� 6620z9 + 1558z8 + 3548z7+
8678z6 � 1264z5 � 3158z4 � 6480z3 � 79z2 + 2042z + 1784

5.24 SY8

ax+ y � 1 = 0

x+ ay � 1 = 0

Solution in 3.13s with variables f x y a g. n
x� y

ya + y � 1

n
x+ y � 1
a� 1

If a is a parameter the case a+ 1 = 0 should be checked separately (no solutions).

5.25 SY9

t � (a� v) = 0

x+ y + z + t� (u+ w + a) = 0

xz + xt+ yz + zt� (ua+ uw + wa) = 0

xzt� uwa = 0

14

Solution in 32.06s with variables f x y z t g.8><
>:
x+ y � v �w

ya � yv � av + v2 + vw

z � u

t� a + v

8><
>:
x+ y � u� v

ya � yv � av + uv + v2

z � w

t� a+ v8><
>:
x+ y + a� u� v �w

ya � yv + a2 � au� 2av � aw + uv + uw+ v2 + vw

z � a

t � a+ v

5.26 SY10

d sin�1 = �a
d cos�1 = b

l2 sin�2 + l3 sin�3 = c

l2 cos�2 + l3 cos�3 = d

cos�1
2 + sin�1

2 = 1

cos�2
2 + sin�2

2 = 1

cos�3
2 + sin�3

2 = 1

No solution in practical execution time with variables
f sin�1 sin�2 sin�3 cos�1 cos�2 cos�3 d g

5.27 SY11

x2y2 (�4x� 3 y + 18) = 0

x3y (�2x� 3 y + 12) = 0

Solution in 5.92s.

fx fy
�
x� 3
y � 2

15

LongFloat

Long Precision Floating Point Math Library

for the HP48 with ALG48

Version 4.0

Mika Heiskanen Claude-Nicolas Fiechter

April 3, 1997

1 Acknowledgements, copyright & disclaimer of warranty

All the �les of the long precision oating point math and ALG48 libraries are copyrighted c by Claude-Nicolas
Fiechter and Mika Heiskanen.

The LongFloat library is distributed in the hope that it will be useful, but the copyright holders provide the
program \as is" without warranty of any kind, either expressed or implied, including, but not limited to, the
implied warranties of merchandability and �tness for a particular purpose. In no event will the copyright holders
be liable to you for damages, including any general, special, incidental or consequential damages arising out of
the use or inability to use the program.

This version of LongFloat library is a GiftWare release. You may use it as long as you like, but only for
non-commercial purposes and only as a private person. Permission to copy the whole, unmodi�ed, LongFloat
library is granted provided that the copies are not made or distributed for resale (excepting nominal copying fees)
and provided that you conspicuously and appropriately include on each copy this copyright notice and disclaimer
of warranty.

Special thanks to Joe Horn for his many useful comments, suggestions and detailed bug reports.

2 Overview

LongFloat provides commands for doing basic arithmetic and some transcendental functions to operate with
oating point numbers with arbitrary precision.

Arithmetic operations include addition, substraction, multiplication, division, inversion, negation, square root,
raising to a power, comparison and taking integer or fractional parts.

Transcendental functions include exponentiation, logarithm, trigonometric and hyperbolic functions and a special
command to return � in the currently de�ned precision.

3 Installation

LongFloat takes approximately 6Kb of memory and works in both HP48G(X) and HP48S(X). LongFloat uses
some of the internal subroutines in ALG48, and thus requires it to be installed. See the ALG48 documentation
for information on installing ALG48.

1

Due to the special optimization features used in ALG48, not all storage combinations are allowed. The following
ones are possible:

� In SX there are no restrictions.

� In GX if ALG48 is in port 0 or port 1 then LongFloat can be stored in any port.

� In GX if ALG48 is stored in port 2 (or higher) then LongFloat must be stored in the same port, or in
port 0.

Installing ALG48 and LongFloat in the same port seems the most natural choice and is highly recommended.

LongFloat is an auto-attaching library (library number 912). To install it on your HP48 download the �le
long.lib onto your (in binary mode), put the content of the created variable on the stack, store it in the port of
your choice (e.g., 'LONG.LIB' DUP RCL SWAP PURGE 0 STO) and power-cycle the calculator.

4 Use

4.1 Available Functions

Command Description Stack
FADD Addition ($1 $2 ! $')
FSUB Substraction ($1 $2 ! $')
FMUL Multipication ($1 $2 ! $')
FDIV Division ($1 $2 ! $')
FINV Inverse ($! $')
FNEG Negate ($! $')
FSQRT Inverse ($! $')
FPOW Power ($1 $2 ! $')
FPI � (! $')
FEXP Exponentiation ($! $')
FLN Logarithm ($! $')
FCMP Comparison ($1 $2 ! %)
FSIN Sine ($! $')
FCOS Cosine ($! $')
FTAN Tangent ($! $')
FASIN Inverse sine ($! $')
FACOS Inverse cosine ($! $')
FATAN Inverse tangent ($! $')
FSINH Hyperbolic sine ($! $')
FCOSH Hyperbolic cosine ($! $')
FTANH Hyperbolic tangent ($! $')
FASINH Inverse hyperbolic sine ($! $')
FACOSH Inverse hyperbolic cosine ($! $')
FATANH Inverse hyperbolic tangent ($! $')
FIP Integer part ($! $')
FFP Fractional part ($! $')

FCMP returns -1,0 or 1, which correspond to succesful <;= or > tests.

4.2 Setting Precision

By default LongFloat library uses a working precision of 20 digits in all calculations. The default precision can
be altered by storing the desired precision in real number form to a variable DIGITS in the home directory. If the

2

stored object is not a real number, or is one but is not an integer or is outside the range 2 � DIGITS � 10000
an error is generated.

In programming one may wish to temporarily alter the working precision, thus can be easily achieved by creating
a local variable DIGITS containing the desired precision satisfying the limitations given above. A simple example
of how to do this is the following program, which returns

p
2 to an accuracy of 100 digits.

<<

100 -> DIGITS

<<

"2" FSQRT

>>

>>

The user should note that not all precisions are rational choices for some of the functions. The execution time
(HP48GX) for the basic arithmetic operations approaches 1 minute as the precision approaches 1000 digits, square
root calculation is already signi�cantly slower and for the transcendental functions using 100 digit precision already
takes more time. Also the algorithms used for transcendental functions use suitable scaling formulas to get the
arguments into the range of convergence for the respective polynomial approximations. This implies the functions
get slower as the absolute value of the exponent increases. In some cases convergence may also be slow if the
argument approaches the limit of the region of convergence.

4.3 Representation of Long Precision Floating Point Numbers

To represent long precision oating point numbers LongFloat uses HP48 string type objects. Thus the numbers
are easily readable and conversion between regular HP48 real number objects is trivial using the built-in !STR

and OBJ! functions. For example the result for "10000" FEXP with the default 20 digit precision will be

"8.8068182256629216366E4342";

a result which would already cause an error in HP48 due to the very large exponent.

5 Contact

Gifts :), bug reports, and constructive comments and suggestions can be sent to either one of the following
addresses.

Mika Heiskanen Claude-Nicolas Fiechter
J�amer�antaival 7 C 355 Department of Computer Science
02150 ESPOO University of Pittsburgh
Finland Pittsburgh, PA 15260, U.S.A.
mheiskan@cc.hut.fi fiechter@cs.pitt.edu

3

	ALG48
	Overview
	Installation
	Commands
	Generalities
	Algebraic expressions
	Output format
	General algebraic simplifcation
	Automatic simplifcation flag
	Partial fraction expansion
	Rational functions integration
	Symbolic matrix manipulation
	Nonlinear equations & Grobner bases
	Verbose mode flag
	Calculating with fractions
	Algebraic operations on modular polynomials
	Unlimited precision integer arithmetic
	Modular arithmetic on unlimited precision integers
	Performances
	Remarks

	History of changes
	Simplifcation Rules for ASIM
	Command Reference

	SpecFun
	Overview
	Installation
	Use
	Special Functions
	Polynomial Generating Functions
	Examples

	Changes from Previous Versions

	Grobner
	Systems of Polynomial Equations
	Grobner bases & the Buchberger algorithm
	Properties of Grobner bases
	Grobner basis Commands in ALG48
	Polynomial Systems & Solutions

	LongFloat
	Overview
	Installation
	Use

