Printed in Singapore

Rev. J. K. Horn, O.Praem.
1042 Star Route
Orange, CA 92667

(D it

HP 82441A
FORTH/Assembler ROM

Owner’s Manual

For the HP-71

April 1984

Movoce By Bos Miccar
CF"""‘“"'/X)

82441-90001

© Hewlett-Packard Company 1984

Section 2: The HP-71 FORTH System 21

~# returns x2.

" returns 10%.

e = 1M returns the sine of x.

e [I[1% returns the cosine of x.
¥ e THH returns the tangent of x.
e [returns e*
e 1.+ returns the reciprocal of x.

T returns the square root of x.

e i returns y*.
e L.GT returns logy of x.
e | i returns the natural log of x.

e FHTHH returns the arc tangent of x.

: 1M returns the arc sine of x

= returns the arc cosine of x.

e F[1H rolls down the stack (“down” in the HP-RPN sense).
e [:LIF rolls up the stack (“up” in the HP-RPN sense).

»% swaps x and y.
e | M%TH pushes the contents of the LAST X register onto the floating-point stack.
e FEMTEFR pushes the contents of the X-register onto the floating-point stack.

e L. fetches a floating-point number from the address on top of the data stack and pushes it onto the
floating-point stack.

-

e =TI stores x into the address on top of the data stack.
e . displays x without altering the floating-point stack.
o FiFMEIHELE creates a floating-point variable in the FORTH dictionary.
e FIUIMETHHMT creates a floating-point constant in the FORTH dictionary.

o H=@T, HEYT, KITT, H=YT, HEYT, X<=¥7, and ¥>=Y7 perform the specified test and, if true,
push a true flag (—1) onto data stack; or if false, push a false flag (0) onto data stack.

e IELKEEES sets the active angular mode to degrees.
e RAITHME sets the active angular mode to radians.
e LT[FI, EMG, and ZZ1 set the display format.

)P+ I¥T€eer PART OF X >Xx; Lastx,

FP : FRAcTiomAaL FaRT.

Section 3: The Editor 41

The Copy command permits you to copy one or more lines from one place in the file to another place in
the file. You can also copy part of another file into your edit file. Copy always inserts the copied text
before the current line. The Move command is similar to the Copy command but deletes the text in the
original location.

If no filename is specified, the indicated lines come from the edit file. If a filename is specified, the in-
dicated lines come from the specified file. You can’t copy or move a block of text that includes the current
line, unless the current line is the first or last line of the block of text,

The Mok irg . . . message is displayed when you copy or move text.

Here are some examples of the Copy and Move commands:

8 Duplicate the current line.

i Copy line 5 and insert it before the current line.

S Move lines 3 through 9 from within the edit file and insert them before the
current line, then delete the original lines 3 through 9.

Copy the file Z#T and insert the lines before the current line.

Copy lines 20 through the last line of the file ABC and insert the lines before
the current line in the edit file.

The Delete (I}) Command

[beginning line number [ending line number]] T [filename [+]]

Default values: beginning line number = current line
ending line number = beginning line number

The Delete command deletes one or more lines from the edit file. You can place the deleted lines into a
new file or, using the + option, append the lines to an existing file. When you execute Delete with line
number parameters specifying more than one line, the message &k to delete? YoM will appear.
You must answer *f before the editor will complete the deletion. If you answer H, the Command Prompt
returns.

The bk i . . . message is displayed when you use Delete.

The following examples show some uses of the Delete command:

[Delete the current line.

Delete lines 12 through 32.

405 0 CACHE Delete lines 4 through 9 and store them in a new file called CACHE.
210 ARCHY+ Delete lines 2 through 21 and append them to the end of a file called ARCHV.

You can not purge a file while you are in the editor, but you can delete all of the text and leave an empty
file. Refer to section 6 of the HP-71 Owner’s Manual for instructions on how to purge a file.

COMMANDS CANNOT BE cow cATENATED AFTER THE + of Tion.

42 Section 3: The Editor

The Search (=) and Replace (F) Commands

[beginning line number [ending line number]][7] = -string1[]

Default values: beginning line number = current line + 1
ending line number = last line

[beginning line number [ending line number]][*] F string1.-string2[-]

Default values: beginning line number = current line
ending line number = beginning line

The Search and Replace commands allow you to search through a file for a certain string of characters
stringl. If you use a Search command, the first line containing stringl becomes the current line. If you use
a Replace command, all occurrences of stringl are replaced by string2, and the last line containing stringl
becomes the current line. If either command can’t find stringl, it displays Mot Fourn .

These commands search the specified lines in the edit file for the string indicated between the slashes ().
These slashes act as delimiters, marking the string’s boundaries. If you need .~ as a normal character in
your search string, you can use any other character (except a blank space) as the delimiter. The first non-
blank character after the command = or F is the delimiter. The last delimiter is optional unless another
command follows this command. *

Search and Replace can distinguish between uppercase and lowercase letters. For example, a search for the
string .j ==k will not find the string tack.

The following examples show some Search commands and Replace commands with parameters:

Sodack From the next line through the end of the file, search for the first occurrence of
the string “Jack.”
T oa-sdill From line 3 through line 7, search for the string “Jill.”
Froatsdogs Replace all occurences of “cat” with “dog” on the current line.
4 TR scateodog On lines 4 through 7, replace -all occurences of “cat” with “dog.”
FdZ- 4438 On the current line, replace all occurences of “3/4” with “3/8.” The character #

is used as the delimiter so that slashes may occur in the strings.

CHEmeet s From the current line to the end of the file, replace “meet” with the null string
(that is, delete “meet”).

If the replacement string2 causes the line to be longer than 96 characters, the editor will redimension
variables, causing a slight delay.

XcommAND S ARE CONVCATENATED WITH SEm/cocoS e.g-

1S/ErRep/; T

SEARCMES FoR "ERep® THEN €ENTERS TEXT ~MoPE.

=

Section 4

The Assembler

The FORTH/Assembler ROM contains an assembler that enables you to write assembly language exten-
sions to the FORTH system or to the BASIC operating system. The assembler provides access to the
complete HP-71 CPU instruction set through source code mnemonics that are nearly identical to those of
the assembler used to produce the HP-71 BASIC operating system, as listed in the HP-71 IDS.

The assembler is invoked from the FORTH environment by the word AZZEMELE, which is preceded by a
string specifying the name of the assembler source file. The source file is an HP-71 text file, which you
can create using the editor described in section 3. The output of the assembler can be either new FORTH
words, which are placed directly into the FORTH dictionary, or HP-71 language extension (LEX) or
binary (BIN) files, which are loaded automatically into the HP-71 file chairf* The type of assembler output
is specified by pseudo-ops included in the source file. The assembler can also produce an optional assem-
bly listing, which is directed to an HP-71 file or to a listing device on HP-IL.

This section gives the rules for using the assembler, describes the HP-71 CPU, shows some sample source
files for the three types of assembly, and finally describes the assembler’s mnemonics and pseudo-ops.

Using the Assembler

Running the Assembler
The assembler is run while in the FORTH system by typing:
" source-file specifier" FESEMELE

The source-file specifier can include a mass storage device specifier. You can’t run the assembler from
BASIC (using FORTH!) because the assembler uses RS T 5,

There is no intermediate link operation. The assembler acts as a loader, creating absolute modules that
are ready to execute. New FORTH primitives go directly into the FORTHRAM dictionary. LEX and BIN
files go directly into the file chain in RAM. *

While the assembler is running, the display will show FASS 1 or FAZZ 2 to indi-
cate the assembly’s progress. A dot . is added to the display as each source line is processed. If you
press while the assembler is active, the assembler will halt and prompt you with the mes-
sage HEORT CWv.-MI1 7 If you now press (Y], the assembly will terminate, and the message
azzembler abor ted will be displayed. If you press any other key, the assembly will resume.

X Butr LEX Fices ArRe NoT Apper To Twe Lex Cuaqinv Auremarcqeer!

YU fusr TuRw Twe 7/ OfRF ¥ Bacx Ov To ConFreore THer.

45

Section 4: The Assembler 49

Subfields of the working registers may be manipulated by field selection. The possible field selections
range from the entire register to any single nibble of the register. Certain subfields are designed for use in
BCD calculations; others are used for data access or general data manipulation. The following diagram
shows the seven fixed fields within a 16-nibble working register.

Fixed Fields within a Working Register

e W —

15 (14 (13 (12 [11 10| 9 8 7 6 5 4 3 2 1 0

A A
S - M —> XS <=B>»
- X —»

There is a one-nibble CPU pointer (the P register, described under “Control Registers”) that can indicate
any nibble in a working register. This allows two variable fields to be defined: the indicated nibble alone,
or that nibble along with all lower nibbles (to the right). This makes a total of nine fields, listed below.

Fields within a Working Register

Name | Nibbles Description dig ts (d)

B 1-0 Exponent or byte. 23

X 2-0 Exponent and sign. =3

XS 2 Exponent sign. /

A 4-0 Address. 5

w 15-0 Full word. "

M 14-3 Mantissa. /2

S 15 Sign. /

P P At pointer. /
WP P-0 Word through pointer. ()

Section 4: The Assembler 55

Sample Binary Program. This binary program displays HEL L[

EIH THELLO!
CHRIH -1
¥

BEFzOER EGU FO1CBE
4
¥
: 4

EHOBIM EGU FOYE4E
¥
g
COSUE FOF

FOF =R
¥
0i=C
COSEYL BF20OSF
*
GOVLHG ENDBIH
EHD

Assembler Mnemonics

The assembler mnemonics are listed below in condensed form, grouped by function. A list of all mnemon-
ics (listed in ASCII order) with their opcodes and cycle times appears in the HP-71 Software IDS.

Branching Mnemonics

GOTO Mnemonics. In the following mnemonics,

e offset is the distance in nibbles to the specified label.

\
v - OF
0 GOTO label Short goto (—2047 < offset < 2048). €aaa (6300 = wor)
10 (DEOT label Short goto if carry (—127 < offset < 128). Yoo (420 = #0F)
/0(3) GOHEC label Short goto if no carry (—127 < offset < 128). {7’}14 (; 20 =D />>
v GOLOMG Jabel Long goto (—32766 < offset < 32769). &< Gaaa (gcyo00 = 0P \}
\ ¥
)Y GOVLHEG label Very long goto (to absolute address). &P aaaaa
GOYES label Short goto if test true (—128 < offset < 127). —
] (Used only with test mnemonics.)
(yf/f%

56 Section 4: The Assembler

GOSUB Mnemonics. In the following mnemonics,
e offset is the distance in nibbles to the specified label.
v/ _ Pucw
Short gosub (—2044 < offset < 2051). Tocaa /\7099 = FUoH,

y - “*3
Long gosub (—32762 < offset < 32773). 2€aaaa (Fcoooo = PUSH)

/2 GOSUE label

/S GOEUEL label

/5 GOEEVL label Very long gosub (to absolute address). 2 Fococea o)
Return Mnemonics.

9 RETH Return. ©]

9 RTHEC Return and set carry. ©2

9 ORTHCC Return and clear carry. ©2

Return and set External Module Missing bit. ©©

q Return from interrupt (enable interrupts). OF |
10 (3) RTHE Return if carry set. yoo
jo(2) RTHHLC Return if no carry set. o

o el [S Return if test true. oo

(Used only with test mnemonics.)

Test Mnemonics

GOYVES or FTHYES mnemonic combine to generate a single opcode. Each test will set the carry flag if
true, or clear the carry flag if false.
Register Tests. In the following mnemonics,

e (r,s) = (A, B), (A,), (B, A), (B, C), (C, A), (C, B), (C, D), or (D, O).

ofs = A, P, WP, XS, X,S, M, B, or W

Tr=s fs Is fs field of r equal to fs field of s?
“ris fs Is fs field of r not equal to fs field of s?
Tr=E fs Is fs field of r equal to zero?
Tr#e fs Is fs field of r not equal to zero?
“rrs fs Is fs field of r greater than fs field of s?
Tris fs Is fs field of r less than fs field of s?
Trr=s fs Is fs field of r greater than or equal to fs field of s?
Tro=s fs Is fs field of r less than or equal to fs field of s?
13 +d <é+&)

L Cgate in
d=#Het diqiTs InTs

Section 4: The Assembler 57

Pointer Tests. In the following mnemonics,

e 1 is an expression whose hex value is from 0 through F.

Is P register equal to n? FCn J//

TFE N Is P register not equal to n? & 77‘»,7}y
Program-Status Tests. In the following mnemonics,
e n is an expression whose hex value is from 0 through F.
n Is bit n in ST equal to 0? g€ n).'/v/ =
n Is bit n in ST equal to 1? 37‘4)‘%,7 J‘I‘Sczwe
F#& n Is bit n in ST not equal to 0? <=— ’;)
TETHLI n Is bit n in ST not equal to 1? =
Hardware-Status Tests.
(6) FEM=@ Is the External Module Missing bit clear? = ;/é’y \))
Is the Sticky bit clear? & 22 ;y (‘/ 7 Inyy
Is the Service Request bit clear? &2 é/}fi, (C)"/a/“ bifs in
Is the Module Pulled bit clear? S 3 2;), /./: P Hfﬁ?(:’)

P Register Mhemonics

In the following mnemonics,

e n is an expression whose hex value is from 0 through F.

Note that the C register is the only working register used with the P register. During those operations that

involve a calculation, the carry flag is set if the calculation overflows or borrows; otherwise the carry flag
is cleared.

Set P register to n. 2n

Increment P register. © ¢

Decrement P register. oD

Add P register plus one to A field in C. Arithmetic is hexadecimal. ¢ 9

Exchange P register with nibble n in C. EOoFn

F=0 n Copy nibble n in C to P register. o .,

C=F n Copy P register to nibble n in C. g0

58 Section 4: The Assembler

Status Mnemonics

In the following mnemonics,

e n is an expression whose hex value is from 0 through F.

¢ ET=6 n Set bit nin ST to 0. 7 7»
Y =T=1 n Set bit n in ST to 1. 3 %» i
L CETEA Exchange X field in C and bits 0 through 11 in ST. © 5
LoC=ET Copy bits 0 through 11 in ST into X field in C. ©9
L omT=1 Copy X field in C into bits 0 through 11 in ST. © 4
Clear bits 0 through 11 in ST. ©7%

o

3 5
A
=

Clear Sticky bit (SB). & 2 &

Clear Service Request (SR) bit. ¢ z ¢
Clear Module Pulled (MP) bit. 2°¢
Clear External Module Missing (XM) bit. ¢ 2/
Clear SB, SR, MP, and XM bits. 82 F ~

W w

Xy

/
z
b4

~ 2y 3/
Q

wo il

rg'_rh"’

System-Control and Keyscan Mnemonics

The first four mnemonics below are useful for most programmers. The remaining mnemonics are used by
the system and have limited general use; for details, refer to the HP-71 IDS and the HP-71 Hardware
Specification.

3 SETHEH Set arithmetic mode to hexadecimal. &7
Set arithmetic mode to decimal. ©5
Pop return stack into A field in C. ©7
Push A field in C onto return stack. ©¢

1) COHFIG Configure. %05
(2 UHCHFG Unconfigure. 507
{ EEZET Send Reset command to system bus. o 2
{ EUSCLC Send Bus Command C to system bus. %o &
S SHUTOHN Stop here. 707
Il c=10 Request ID (A field in C). €06 T
/[OEREDT Sets service request bit if service has has been requested. Nibble 0 in C “
shows what bit(s) are pulled high. o0& ;
S IMTOFF Disable interrupts (doesn’t affect ON-key or module-pulled interrupts). 0/~
5 IHTOH Enable interrupts. 2 08&°
6 OUT=0C Copy X field in C into OUT. # o/
Y OUT=CS Copy nibble 0 of C into QOUT. %07
7 A=1H Copy IN into nibbles 0 through 3 in A. 02
7 C=1H Copy IN into nibbles 0 through 3 in C. #°2
F(:(/l}) wsed by HP-28S g0 gC

;4

0% | l
|

|

|

Section 4: The Assembler 59

Scratch Register Mnemonics

In the following mnemonics, AC > Ro/ R(kZ/K 3 RY
) / /
er = A orC.

e ss = RO, R1, R2, R3, or R4.

(q rssEr Exchange r and ss. /20 -/2/~
19 r=ss Copy ss into r. /7o -//F7
/9 ss=r Copy r into ss. /oo ~r0F

Memory-Access Mnemonics
/4) Cory = A2 P DY

Data-Pointer Mnemonics. In the following mnemonics,
er=AorC.
e ss = DO or D1. ~
e 1 is an expression whose hex value is from 0 through F. (575 Cosll oy e’)
e nnnnn is an expression whose hex value is from 0 through FFFFF.

During those operations that involve a calculation, the carry flag is set if the calculation overflows or
borrows; otherwise the carry flag is cleared.

$ rssk Exchange A field in r with ss.
7 ISSHE Exchange nibbles 0 through 3 in r with ss.
J ss=r Copy A field in r into ss.
7 ss=rs Copy nibbles 0 through 3 in r into ss.
7/ §s8=88+ n Increment ss by n.
7 88=88~ n Decrement ss by n.
Yy Load ss with two nibbles from nnnnn.
18 Load ss with four nibbles from nnnnn.
7 ss=i%3 nnnnn Load ss with nnnnn.

Data-Transfer Mnemonics. In the following mnemonics,

A C €7 DATS, DATI
er =AorC. /

efs = A P, WP, XS, X, S, M, B, W (or a number n from 1 through 16).

B ofs Copy data at address contained in DO into fs field in r (or into nibble 0
through nibble n — 1 in r).

r=0RTL fs Copy data at address contained in D1 into fs field in r (or into nibble 0
through nibble n — 1 in r).

DATE=r fs Copy data in fs field in r (or in nibble 0 through nibble n — 1 in r) to address
contained in DO.

OFATLI=r fs Copy data in fs field in r (or in nibble 0 through nibble n — 1 in r) to address
contained in D1.

=

60 Section 4: The Assembler

Load-Constants Mnemonics

In the following mnemonics,

e h is a hex digit.

e is an integer from 1 through 5.

e nnnnn is an expression

e c is an ASCII character.

Z+d LCHE® h...h

2.4 LTy nnnnn

N

n
—
o
o
pix]
bl
(9]
(9]

Shift Mnemonics

In the following mnemonics,

er=A,B,C,orD.

with hex value from 0 through FFFFF.

Load up to 16 hex digits into C. The least significant digit is loaded at the
pointer position; more significant digits are loaded into higher positions,
wrapping around from nibble 15 to nibble 0. 3~ hhh, n=#digits =]

Load i hex digits from the value of nnnnn into C. The least significant digit
is loaded at the pointer position; more significant digits are loaded into
higher positions, wrapping around from nibble 15 to nibble 0.

Load up to eight ASCII characters into C. The least significant nibble of the
low-order character is loaded at the pointer position; more significant nib-
bles are loaded into higher positions, wrapping around from nibble 15 to nib-
ble 0. For example, L CASC PHE ' is equivalent to LUHER 414z,

ofs = A, P, WP, XS, X, S, M, B, or W

Non-circular shift operations shift in zeros. If any shift-right operation, circular or non-circular, moves a
non-zero nibble or bit from the right end of a register or field, the Sticky bit SB is set. The Sticky bit is
cleared only by a SE=& or CLEHST instruction.

r=REg
r=L i
rspc

2+d rsl fs

3+d rsR fs

Logical Mnemonics

Shift r right by one bit. (#A4Y S€r s8)

Shift r left by one nibble (circular).

Shift r right by one nibble (circular). (mAaY €T ’B)
Shift fs field in r left by one nibble.

Shift fs field in r right by one nibble. (ma¥ SET $8)

These mnemonics are summarized below, using the following variables:
e (r, s) = (A, B), (A, C), (B, A), (B, C), (C, A), (C, B), (C, D), or (D, C).
ofs = A P, WP XS X, S, M,B, or W

r=ris fs

r=ris fs

fs field in r AND fs field in s into fs field in r.
fs field in r OR fs field in s into fs field in r.

Section 4: The Assembler 61

Arithmetic Mnemonics

Arithmetic results depend on the current arithmetic mode. In hexadecimal mode (set by ZE THE), nibble
values range from 0 through F. In decimal mode (set by ZETIEL), nibble values range from 0 through 9,
and arithmetic is BCD arithmetic.

There are two groups of arithmetic mnemonics. In the first group (general), almost all combinations of the
four working registers are possible; in the second group (restricted), only a few combinations are possible.
During those operations that involve a calculation, the carry flag is set if the calculation overflows or
borrows; otherwise tﬁ(} carry ﬂa_g 13 cleared.

General Arithmetic Mnemonics. In the following mnemonics,

o (r,s) = (A, B), (A, C), (B, A), (B, C), (C, A), (C, B), (C, D), or (D, C). A— PR

efs =A P WP, XS, X, S, M, B, or W.
r=g fs Set fs field in r to zero. I

srar fs Double fs field in r (shift left by one bit). el

r=r+1 fs Increment fs field in r by 1.

r=r—1 fs Decrement fs field in r by 1.

r=-r fs Tens complement or twos complement, depending on arithmetic mode, of fs

field in r. Clears Carry if argument =0; sets Carry otherwise.

r=-r-1 fs Nines complement or ones complement, depending on arithmetic mode, of fs
field in r. Clears Carry.
=r+s fs Sum fs field in r and fs field in s into fs field in r.
s=r+s fs Sum fs field in r and fs field in s into fs field in s.
r=s fs Copy fs field in s into fs field in r.
s=r fs Copy fs field in r into fs field in s.
rskd fs Exchange fs field in r and fs field in s.

Restricted Arithmetic Mnemonics. In the following mnemonics,
e (r,s) = (A, B), (B, C), (C, A), or (D, C).
ofs = A P, WP, XS, X, S, M, B, or W.

r=r-s fs Difference of fs field in r and fs field in s into fs field in r.
r=s-r fs Difference of fs field in s and fs field in r into fs field in r.
s=8~r fs Difference of fs field in s and fs field in r into fs field in s.

No-op Mnemonics

co () HOFZ Three-nibble no-op. y 20
U HopPd Four-nibble no-op. (200
(s Five-nibble no-op. L4000

Section 4: The Assembler 63

Macro-Expansion Pseudo-ops for LEX Files

LE® ‘'name'’ Assemble a new LEX file called name. This pseudo-op must be the first
line in the source file. The LEX file will have the correct header. The
intial data for this file is defined by the I, M=, and FOLL pseudo-
ops, which must be present in that order.

111 byte Define the LEX ID of this LEX file. The byte is placed in the appro-
priate data field. This pseudo-op is required when the L E i pseudo-op is
used.

Mz label Define the beginning of this LEX file’s message table. I1=1: will place

label in the appropriate field. This pseudo-op is required when the L E
pseudo-op is used. If there is no message table, enter M= .

Ll label Define the beginning of this LEX file’s poll-handling routine. F L L
will place label in the appropriate field. This pseudo-op is required when
the LE pseudo-op is used. If there is no poll-handling routine, enter

FOLL &,
EHTEY label Begin the definition of a BASIC keyword. Each keyword requires four
pseudo-ops: EHTEY, CHARE, KEY, and TOREH.

Because of the structure of the LEX file’s keyword tables, these pseudo-
ops require a particular order. For example, the following assembly-
language header defines two keywords, &E% 1 and FEY 2.

) EHTEY labell The code for the first keyword begins at labell.

HAR S The first keyword is legal for keyboard execu-
tion and after THEHM . . . ELZE.

EHTEY label2 The code for the second keyword begins at

2 label2.

#F The second keyword is a function.

[KEYL? The first keyword is invoked with “KEY1” in

BASIC.
The first keyword has token 1.

KEYZ! The second keyword is invoked with “KEY2”
in BASIC.

The second keyword has token 2.
EHD Mark the end of the keyword tables.

/

"EH
;-i

2

lTl
'

CHAER A Describe the type of BASIC keyword. Each EHTEY requires a
corresponding CHFAFE, which places a “characterization nibble” in the
keyword tables. The characterization nibble defines BASIC keywords as
follows.

Appendix C: BASIC Keywords 81

DELETE#

Deletes one record from a text file.

B Statement B Keyboard Execution
O Function [0 CALC Mode
[J Operator B IF..THEN...ELSE

[ELFETE# channel number . record number

Example

DELETE# 5,14 Deletes the 14th record from the text file currently
assigned to channel #5.

Input Parameters

Item Description Restrictions

channel number Numeric expression rounded to an integer. 1 through 255.

record number Numeric expression rounded to an integer. 0 throu.xll EOF
Operation

The DELETE# keyword deletes the specified record from the text file assigned to the specified channel
number. Record numbers always begin at 0, so line number 1 is record number 0.

The channel number and the record number can be expressions. DELETE# rounds each of the resulting
values to an integer.

MELETE$# returns an error message if the assigned file is external, protected, or not a text file.

Related Keywords

GH#, IMSERT#, REFLACE#, FILE:

82 Appendix C: BASIC Keywords ; ’

EDTEXT {

Invokes the text editor.

B Statement B Keyboard Execution '
[0 Function [0 CALC Mode
[J Operator B IF..THEN...ELSE

EOTE =T file specifier[. command string]

Examples

EDTE®T SCREEEH Runs the editor program, with ZCREEEH as the edit
file.

EOTEXT SCREEM, L Runs the editor program, with ZCREEH as the edit

file. Begins by listing the file to the display device.

Input Parameters

Item Description Restrictions
file specifier String expression or unquoted string. File must be in
RAM or IRAM.

S7ting or wnq woted stria
command string See dJ escription of editor command strings in section 3.

Operation

The EOTET keyword starts the editor program. The optional command string permits you to have the
editor begin immediate execution of editor commands that appear in the command string.

An error can cause the editor program to terminate without going through its normal exit path. If you are
running the editor from another BASIC program, or from the FORTH environment, you can check for
this situation by using DIZF# to read the display contents. If the result is other than
Oore: <filenames, then you will know that the editor has encountered a fatal error, the edit file
may be in a corrupt state, and the editor key assignments may still be active. For example, from the
FORTH environment, you can type the sequence

" EOTEXT SCREEM" BASICH " DISFE" BASICHE DROF B -1823858 =

to edit the file SZREEHM. When the editor terminates, a true flag will be pushed on the stack if the editor
terminated normally (here we are checking the numerical equivalent of the first three characters on the
display to see if they match “Don”, which translates to —102588).

Related Keywords

ASSIGHS, DELETE#, FEFLACE#, FILESZRE

D Rt X e R . U

Appendix C: BASIC Keywords 83

ESCAPE

Adds or modifies an escape-sequence key specification in the current KEYEOFRRD 1% key map buffer.

B Statement B Keyboard Execution
[0 Function [J CALC Mode
0 Operator B |F..THEN...ELSE

B Device Operation

FE string . key number

Example
AL AE Specifies that the escape sequence (ESC)A received
from the KE¥EOARED 15 device will be changed to
key code 43.
THY LA Cancels the (ESC)A assignment.
Input Parameters
Item Description Restrictions
string String expression. Only the first
character is used.
key number Keycode. 0 through 168.
Operation

E specifies that a particular one-character escape sequence (the escape character ASCII 27 fol-
lowed by a single character) received by the HP-71 from the current KEYEOHRED I= = device will be re-
placed by an HP-71 keycode in the key buffer input. EZCHFE requires two parameters, a one-character
string and a numeric keycode. The string specifies the escape sequence; the number indicates the
corresponding keycode. '

The first execution of ESTAFE creates a special HP-71 buffer that specifies the mapping of escape se-
quences received from a KEYEOIARD IS device to HP-71 keycodes. Each subsequent use of EZCHFE
will add a new character/key code mapping, or modify an existing one, in the buffer. You can clear the
buffer completely by executing REZET EZCAFE. The buffer will be cleared if you turn on the HP-71
when the FORTH/Assembler ROM is not installed.

MﬁIOKBD CHR %f) L

s Tow CTR~C o ATAW ;| repuires KEYEOARP CEXFIte
‘) s RN (01/7 —lﬁ/<

Appendix C: BASIC Keywords 97

SCROLL

Scrolls the display to a position and waits for a key to be pressed.

B Statement B Keyboard Execution
0 Function [0 CALC Mode
0 Operator B IF.THEN...ELSE

(1L L position

Example

=
a5
i
ot
1
+
r‘
i1
it
i
Kl
'
o

SCROLL 4 Display the string “Hello there,” with the fourth
character in the string as the first character in the
display, so that the display shows “lo there.”

Input Parameters

Item Description Restrictions
position Numeric expression rounded to an integer. g through 96.
Operation
The = E0LL keyword enables you to display a string, under program control, that can be scrolled from

the keyboard. Execution of ZCEILL causes the current display string to shift so that the character in the
position specified by the numeric expression is the leftmost character in the display. Execution halts, so
that a user can press the left- and right-arrow keys to scroll the display. Execution resumes when any
other key is pressed (the pressed keycode is placed in the key buffer). The number input with ZCREOLL
must be greater than zero.

L=

98 Appendix C: BASIC Keywords

SEARCH

Finds a string in a text file.

[J Statement B Keyboard Execution
B Function [0 CALC Mode
(] Operator B IF..THEN...ELSE

ZERRCH search string . column number , begin #ne . end tine . channel :
RECORD RECORD

Example

AESEARECHO"Hello® 5,1, 21

L

Searches the file assigned to channel #2 for the
string “Hello.” The search starts in column 5, line 1,
and extends through line 99.

Input Parameters

Item Description Restrictions
search string String expression. F=through-9999-
column number Numeric expression rounded to an integer. 1 through 9999
begin line Numeric expression rounded to an integer. 4 through 9999
end line Numeric expression rounded to an integer. p& through 9999
channel Numeric expression rounded to an integer. 1 through 255 -
Operation

The SEAFRCH keyword enables you to determine the location of a specified string within an HP-71 text
file. If the search is successful, ZEFFCH returns a value in the format nnn.ccclll, where nnn is the record
number, ccc is the column number, and /I] is the length of the matched string. If the search is unsuccessful,
zero is returned.

The search string can be any string expression, and the other parameters can be any numeric expression.
Each input value is rounded to an integer. A zero is returned for an empty file.

Related Keywords
IMSERT#, DELETE#, FEFLACE#

The Search S‘fm‘nj w.a/ conTain "'\ wild card C‘Aarac?‘er_c) /n which casce
the “cLL” fa.rf‘ is useful.

